TRANSACTIONS $135^{\text {s }}$ oftha

AMERICAN

PHILOSOPHICAL SOCIETY,

HELDAT

PHILADELPHIA,

FORPROMOTING

USEFULKNOWLEDGE.
VOLUME I.

THE SECOND EDITION CORRECTED.

PRINTED BY R. AITKEN ש $S O N$, AT POPE's HEAN IN MARKET STREET.
M.DCC.LXXXIX.

PROTHONOTARY's OFFICE, Philadelphia county.

- I DO certify tbat on tbis 2otb dey of April, 1789, a Book entilled "Tranfactions of the American philofophical Society, held at Philadelphia, for promoting ufeful Knowledge," vol. 1. the fo--iond edition correried, printed at Pbiladelpbia, by R. Aitken \& Son, at Pope's Head, in Marketm Strect, was entered in my offce, by Robert Aitken.

JAMES BIDDLE, Prot.

C O N T E N T S
 OF

 V OLUMEI.

 V OLUMEI.}

ADESCRIPTION of an Orrery, executed on a new plan. By D. Rittenhouse, A. M.
Calculation of the Tranfit of Venus over the Sun, as it is to happen fune 3d, 1769, in lat. 40°. N. long. $5^{\text {h }}$. Weft from Greenwich. By D. Rittenhouse, A. M. communicated 7une $21 \mathrm{ft}, 1768$. p. 4

Calculation of the fame for the city of Philadelphia. By Rev. Johs Ewing, A. M. Communicated June 21 f, $1768 . \quad$ P. 5
Anaccount of the Tranfit of Venus over the Sun, Fune 3d, 1769 , as obferved at Norriton, in Pennfylvania. By the Committec appointed for that obfervation. Drawn up, and cummunicated, in behalf of the Commistee, by Rev. William Smith, D. D.
p. 8

An account of the Transit of Venus over the Sun, fune 3d, 1769, and of the Tranfit of Mercury Nov. 9th, both as obferved in the State-Houfe Square, Philadelphia. By the Committee appointed for thofe obfervations. Drawn up and communicated, in behalf of the Committee, by Kev. Joнn Ewing, A. M.
p. 39

An account of the Transit of Venus over the Sun, Fune 3d, 1769, as obferved near Cape Henlopen, on Delaware. By the Committee apointed for that obferoation. Drawn up and communicated, in behalf of the Committec, by Mr. Owen Bidde.
An account of the Tranfit of Venus over the Sun, Fune 3d,1769, as obfcroed at Providence, New England. Drawn up by Benjamin West, A. M. and tranfmitted to the Society by Mr. Joreph Brown.
p. 91.

Obfervations of the Tranfit of Venus and Eclipfe of the Sun, 7une 3d, 1769 . made at the Royal Obfervatory, Greenwich. By Rev. Nevil Maskelyne. B. D. P. R. S. and Aftronom r-Royal. Tranfmitted by himfelf, and communicated to the American Philofophical Society, by William Smith, D. D. p. 100
Some account of the Tranfit of VEnus and Eclipfe of the Sun, as obferved at the Lizard Point, Fune 3d, 1769. By Mr. John Bradeey. Extracted from a paper of the Aftronomer-Royal.
A letter from Rev. Nevil Maskelyne, B. D. F. R. S. Aftronomer-Royal, to Rev. Wiliian Smith, D. D. Provoft of the College of Philadelphia, giving fome account of the Hudfon's Bay and other Northern obfervations of the Tranfit of Venus, June 3d, 1769.
p. 111

An account of the terreftrial meafurement between the Obfervatories of Norriton and Philadelphia; with the difference of longitude and latitude thence deduced. By Wiliiam Smith, D. D.
p. 114

Apparent time of the Contact of the limbs of the Sun and Venus; with other circumftances of moft note, in the different European obfervations of the Tranfit, Fune 3 d, 1769 .
p. 120

An improvement in the conftruction of Godfrey's (commonly called Hadley's) Quadrant. By Rev. Joun Ewing, A. M. p. 126

TRANSACTIONS

OFTHE

American Philosophical Society, Eoc.

SECT. I.

Mathematical amed Astronomical Papers.
4 defcription of a new ORRERY, planmed and now nearly. finifod by David Rittennouse, A. M. of Norriton, in the county of Pbiladelphia. Communicated by Dr.Smith.

Read 27A. ${ }_{\text {pher }}^{1768 .}$ HIS macbive is intended to have three faces, ftanding perpendicular to the horizon: That in the front to be four feet fquare, made of theet brafs, curioully polifhed, filvered and painted in proper places, and otherwife ornamented. From the center arifes an axis, to fupport a gilded brafs ball, intended to reprefent the fun. Round this ball move others, made of brafs or ivory, to reprefent the planets: They are to move in elliptical orbite, having the central ball in one focus; and their motions to be fometimes fwifter, and fometimes flower, as nearly according to the true law of an equable defcription of areas as is poffible, without too great a complication of wheel-work. The orbit of each planet is likewife to be properly inclined to thofe of the others; and their Apbelia and Nodes juftly placed; and Vol. I.

A their
their velocities fo accurately adjufted, as not to differ fenfibly from the tables of aftronomy in fome thoufands of years.

For the greater beauty of the inftrument, the balls reprefenting the planets, are to be of a confiderable bignefs; but fo contrived, that they may be taken off at pleafure, and others, much fmaller, and fitter for fome purpofes, put in their places.

When the machine is put in motion, by the turning of a winch, there are three indexes, which point out the hour of the day, the day of the month and the year, (according to the fulian account) anfwering to that fituation of the heavenly bodies which it then reprefented; and fo continually, for a period of 5000 years, either forward or backward.

In order to know the true fituation of a planet, at any particular time, the fmall fett of balls are to be put each on its refpective axis, then the winch to be turned round 'till each index points to the given time; then a fmall $T e$ lefcope, made for the purpofe, is to be applied to the central ball, and directing it to the planet, its longitude and inclination will be feen on a large brafs circle, filvered, and properly graduated, reprefenting the Zodiac, and having a motion of one degree in 72 years, agreeable to the preceffion of the Equinoxes: So likewife by applying the telefcope to the ball reprefenting the Earth, and directing it to any planet, then will both the longitude and and latitude of that planet be pointed out (by an index, and graduated circle) as feen from the earth.

The two leffer Faces are four feet in heighth, and 2 feet 3 inches in breadth: One of them reprefents and exhibits all the appearances of fupiter, and his fatellites, their eclipfes, tranfits and inclinations: Likewife all the appearances of Saturn, with his ring and fatellites. And the other reprefents all the phænomina of the Moon, particularly the exact time, quantity, and duration of her eclipfes, and thofe of the Sun, occafioned by her interpofition; with a moft
maft curious contrivance for exhibiting the appearance of 2 Solar Eclipfe at any particular place on the earth: Likewife the true place of the Moon in the figns, with her latitude, and the place of her Apogee and Nodes, the Sun's declination, equation of time, \&c. It muft be underfood that all thefe motions are to correfpond exactly with the celeftial motions, and not to differ fome Degrees from the truth, as is common in orreries.

The whole may be adjufted to, and kept in motion, by a ftrong Pendulum Clock, neverthelefs, at liberty to be turned by the winch, and adjufted to any time, paft or future.
N. B. The above machine is to be fupported by a mahogany cafe, adorned with foilage, and fome of the beft enrichments of fculpture. The part containing the mechanical aftronomy of the Moon, has been fometime finifhed, and is found perfectly to anfwer, by many trials already made of it. The remainder of the work is now almoft completed. The clock part of it may be contrived to play a great variety of Mufic.

> 4 MATHEATICAEAYB-1 Tbe followinge CALCULATIONS and PROJECTIONS of the Tranfit of Venus werd latidikefora the Society agrecable to their Dates, and claim a Place bere, las it may be of Ufe, is various Refpects, to compare them woith if the actual Obfervations of the Tranfit, afserwards pnade in this Province; and from thence to calleet the Difforenfes between Computation and Obfervation, together with the Caufes of thofe Differences.

Elymants frm Kalley's Tallo, for Lat. 40° N. © Lang. 75 W. from Greenwith. Conmmiceted ly Irod Dr. 8 suith.

Beginning of the Tranfit, 2 h .16
End, 8. 50
But fuppofing the 8 m's horizontal Parallax but 8 8econde, then for the above Lat. and Lon.
Firt External Contuct will be at 2 h . 1 mimia.
it oil

- The Diameters wourc diminißed to 'onfover tbe Scale to wubich bbe Lat. of V omus evas fot off in the Pringican.

See the Psgiofion; Plate I.
门 The
A

The following Paper by the Revd. Mr. Ewing, was alfo cammunicated.

GENTLEMEN,
 A propofat which. I made to you the 1gth of April laft, of obferving the enfuing Tranfit of Venus over the dikk of the Sun, which will be on the 3 d of June, 1769; permit me to lay before you a projection of the Tranfi, as feen from Philadelphia, together with the elements of the projection, deduced from as accurate a calculation as. I. could make from. Dr. Halley's Tables. I find from the oblervations made on the laft Tranfit in June, 176.1 , that the mean motion of Vemas, for the year 1769 , fhould be $25^{\prime \prime}$ more than thefe tables make it, and that the place of the nodes of Venus, as fated in thefe tables, needs the following correation. At the time of the ecliptical conjumation of the Sun and Venus in June 176.5 , their place was $2^{\prime} 15^{\circ} 36^{\prime}$ $33^{\prime \prime}$, and her geocentric latitude was $9^{\prime \prime} 44^{\prime \prime} \cdot 9$ fouth. Then fay, as $7^{2626.3}$ the diftance of Venus from the Sun : 28894.9 the distance of Venus from the earth :: $584^{\prime \prime} .9$ her geocentric latitude $=3^{\wedge} 5.2^{\prime \prime} .7 \mathrm{I}$ her heliocentric latitude at that timse. Then fay, as the tangent of the inclination of her orbit with the ecliptic, is to rad. fo is the tangent of her betiocentric latitude to the fine of her diftance from the node; ic. as T, $3^{\circ} 23^{\prime} 20^{\prime \prime}:$ rad. :: T, $3^{\prime} 52^{\prime \prime} .71$: S, $1^{\circ} 5^{\prime} 14^{\prime \prime}$, which deduct from her place June 6,1761 , at the time of the tranfit, viz. at $5^{h} 57^{\prime} 20^{\prime \prime}$ at Greenwich; and the remainder viz. $2^{\prime} 14^{\circ} 3 \mathbf{1}^{\prime} \leq 9^{\prime \prime}$ is the place of her afcending node at that time. The motion of her nodes, as flated by Dr. Halley, is $3^{1 \prime \prime}$ per ammum; therefore, for 8 years, add $4^{\prime} 8^{\prime \prime}$ to the abovementioned place of her node and the fum, viz. $2^{\prime} 14^{\circ} 35^{\prime} 27^{\prime \prime}$ is the place of the node in the year 1769, June 3 d. With thefe corrected elements, and others, as in the tables, the following calculations are made.

The apparent time of the ecliptical conjunction of the Sun and Venus, as feen from the center of the earth, 1769 , June $3^{\mathrm{d}}, 5^{\mathrm{h}} \cdot 4^{\prime} 43^{\prime \prime}$, as reckoned at Philadelphia, 5^{h}. 0^{\prime} $32^{\prime \prime}$ weft from Greenwich. The place of the Sun and Venus, at the time of the tranfit, is $2^{\prime} 13^{\circ} 26^{\prime \prime} 32^{\prime \prime \prime}$. The place of her defcending node is $8^{\prime} 14^{\circ} 35^{\prime} 27^{\prime \prime}$ at that time. The geocentric latitude of Venus at that time is $10^{\prime} \mathbf{1 6 " \prime}^{\prime \prime} .295$ The Sun's femidiameter is $15^{\prime} 45^{\prime \prime} .65$. The femidiameter of Venus $0^{\prime} 29^{\prime \prime}$. Their fum 16' $14^{\prime \prime} .65$; Their difference is $15^{\prime} 16^{\prime \prime} .65$. Venus's horary motion from the Sun $3^{\prime} 57^{\prime \prime} \cdot 43$. The angle made by the axis of the earth and ecliptic, as feen from the Sun, $7^{\circ} 3^{\prime} 16^{\prime \prime}$. The angle made by the axis of Venus's vifible path and the axis of the ecliptic, is $8^{\circ} 34^{\prime}{ }^{1} 7^{\prime \prime}$; the angular point or node being $1^{\circ} 8^{\prime} 55^{\prime \prime}$ weft of the Sun. The angle made by the earth's axis and the axis of Venus's vifible path is equal to the fum of thefe, $15^{\circ} 37^{\prime} 35^{\prime \prime}$. The horizontal parallax of the Sun on the day of the tranfit is $8^{\prime \prime} .5204$, when his diftance from the earth is 10152 I .2 , his parallax at his mean diftance 100000 being fuppofed to be $8^{\prime \prime} .65$, as found at the laft tranfit, 1761. The horizontal parallax of Venus on the day of the tranfit $29^{\prime \prime} .9348$, when her diftance from the Sun 72626.3, her mean diftance being according to her periodic time 72333. The difference of thefe, viz. $21^{\prime \prime} .4144$, is the horizontal parallax of Venus from the Sun on the faid day. The tranfit begins, as feen from the earth's center, at $2^{\mathrm{b}}, 17^{\prime} 20^{\prime \prime} \cdot 4^{8}$, and ends at $8^{\text {h }} \cdot 41^{\prime} 4^{\prime \prime} \cdot 72$. The total ingrefs at $2^{\text {h }}$. $3^{6^{\prime}} 31^{\prime \prime} \cdot 3^{8}$; the beginning of egrefs at $8^{\text {h }} .22^{\prime} 35^{\prime \prime} .82$; fo that the whole duration between the internal contacts will be $5^{\mathrm{h}}, 46^{\prime} \cdot 4^{\mu} \cdot 44$. But thefe times will be confiderably altered by the parallaxes of Venus in longitude and latitude, as obferved from different parts of the earth. The whole effect of the parallaxes of lon itude and latitude at the time of the external contact to haften it, being $3^{\prime} 3^{1 \prime \prime}$, the time of it, as feen from Philadelphia, is at $2^{\prime \prime}, 13^{\prime} 49^{\prime \prime} 28^{\prime \prime \prime}$ P. M. And the time of total ingrefs at Philadelphia is
$2^{\text {h }} \cdot 32^{\prime} 27^{\prime \prime}$; the total effect of thefe parallaxes to accelerate the internal contact being $4^{\prime} 4^{\prime \prime}$.

Thefe times depend upon the longitude of Philadelphia, weft of Greenwich, which in this calculation is fuppofed to be $5^{\mathrm{b}}, 0^{\prime} 3^{\prime \prime}$, which is as near as I have yet been able to afcertain it, by comparing a number of obfervations made on the eclipfes of the firft fatellite of Jupiter, with Mr. Emmerfon's tables. But thefe cannot be depended upon for the longitude, within a minute or two of time, which will by nomeans anfwer the defign of afcertaining the diftances of the Sun and planets by the enfuing tranfit. I would therefore beg leave to propofe to the Society, that provifion be made, without lofs of time, for erecting a fmall obfervatory in fome convenient place that the occultations of fome known ftars by the Moon, and the eclipfes of Jupiter's fatellites, may be noted, and compared with the correfponding obfervations made at Greenwich and other places: And that fome proper perfons be appointed to make the obfervations, at the expence of the Society, that our longitude may be afcertained with the precifion that is neceffary. It would be proper, that at leaft two fetts of obfervers be appointed to view the tranfit in this city, in order to guard againft the fatal accident of lofing the Sun out of the field of the telefcope, in the critical and important moment; which I find happened to a good aftronomer in the Eaft-Indies, at the time of the laft tranfit. It is very difficult to preferve a celeftial object in the field of a telefcope, that magnifies confiderably.

The expence of making thefe obfervations, with fufficient accuracy, muft be confiderable; but it is hoped that an opportunity will not be neglected on this account, which, for its importance to the interefts of aftronomy and navigation, has juftly drawn the attention of every civilized nation in the world, and which will not be prefented again for more than a century to come.

Thefe:

Thefe things are fubmitted，with all humility and de－ ference to the judgment of this refpectable Society，by

An Account of the Transit of Kenus over the Sun＇s Disk，as obferved at Norriten，in the County of Phi－ ladelphia，and Province of Renniylvania June 3d， 1 万信．
By Wiliiam Smith，D．D．Promeft of the Coltige of Phi－ ladelphia，John Lukens，Efq；Survoryor－Qeneral of Pennfylvania，David Rittenfouse，A．M．o）Norri－二二．：－ton，and John Sellers，E／q；Reprefentative in Affem－ bly for Chefter County
Being the Commitee appointed for that Obfervation，by the American Philosophical Society，beld at Phi－ ladelphia，for promoting ufeful Knowledge．
Communicated to the Society，July 20th， 1769 ，by Direc－ tion，and in Bebalf of，the Committee；by Dr．Smith．

gentlemen，

A
MONG the various public fpirited defigns，that have engaged the attention of this Society，fince its
firtit Inftitution；none does them more honor than their early refolution to appoint Committees，of their own Members，to take as many obfervations，in different places， of that rare Pbanomenon，the Transit of Venus over the Sun＇s Disk，as they had any probability of being able to defray the expence of，either from their own funds，or the public affiftance they expected．

The above letter was occafioned by a fhort account I had fent to Mr. Penn four days after the tranfit, informing him of the fuccefs of our obfervations, the times of the contaCts, and a few other circumftances attending them; which he communicated to Mr. Makelyne. Since that, Mr. Markelyne has received full fatisfaction on all the points mentioned in his letter, as complete copies of our different obfervations have been tranfmitted to Dr. Franklin, to com+ municate to him, and fuch other aftronomers as he may think proper among his correfpondents in Europe. The particular circumftances which I mentioned relative to the firft entrance of Venus, was the dufky tremulous thadow or atmofphere that feemed to precede her body, and the light that furrounded that part of her limb not entered on the Sun, which was alfo obferved by the gentleman at Philadelphia, and by Mr. Biddle at the Capes. Which of thefe, or whether both, may be the curious circumftance, or circumftances, obferved here, which Mr. Mafkelyne fays the low altitude of the Sun did not permit him to obferve, we cannot tell; as his account of the Greenwich obfervations has not yet come to hand. W. S.

> An Account of the Obfervations on the Tranfit of Venus over the Sun, on the $3 d$ of $7 u n e, 1769$, by the Committee appointed to obferve it at Philadelphia; drawn up, and prefented to the American Philofophical Society, beld at Pbiladelphia, for promoting ufeful Knowledge, By John Ewing. GENTLEMEN;

IT doubtlefs muft appear ftrange to many, that the parallax of the Sun, which is fo important and fundamental an article in aftronomy, has not been fettled by aftronomers long ago, as fo many things in that ufeful fcience depend upon it. But this furprife is leffened by confidering, that the fmallnefs of the parallactic angle has eluded their moft careful refearches in all ages, as it is but about 8 or 9 feconds

9 feconds of a minute; fo that the fubtenfe of it, were it much larger than it is, muft be invifible to the naked eye at the diftance of 6 inches, and it is hardly poffible to diftinguifh 10 feconds by inftruments, let them be ever fo Ikilfully made. Many methods have been devifed by aftronomers, which fhew the ingenuity of the inventors; but the difadvantage of them all was, that they depended upon obfervations to be made with a precifion, which no inftruments hitherto conftructed could poffibly accomplifh. The tranfits of Venus alone afford an opportunity of determining this problem with fufficient certainty, and thefe, from the frict laws of her motion, happen fo feldom, that there cannot be more of them than two in one century, and in fome centuries none at all. Three only have been obferved fince the creation, and the firt of them by two perfons only. The peculiar advantage of this pheenomenon for determining the parallax of the Sun with a precifion which is not to be expected from any other method, confifts in its being deduced from the abfolute time that elapfes between the inftants of the contacts with the Sun's limb, as feen from different parts of the earth; or from the difference of total durations as noted by diftant obfervers, properly ftationed for that purpofe. A fecond of time being eafily diflinguifhed by a well regulated clock, if the aforefaid abfolute difference of time be carefully noted, in places where it will amount to 24 minutes, it will give the parallax, fmall as it is, within the hundreth part of a fecond of a degree, and confequently the diftance of the Sun and planets within the feven hundredth part of the whole. In fome tranfits this difference of time will be greater, and in others lefs, in certain places on the earth, which renders thofe that happen on the northern part of the Sun's difc, in general, more favourable to our purpofe, than thofe that happerion the fouthern hemifphere. Hence it is, that although much was done in this matter by the fedulity and care of aftronomers at the tranfit in the year 1761 , when Venus paffed fouth of the Sun's center, yet
our expectations could not be fully anfwered by the obfervations that were then made; as it was eafily forefeen that much greater precifion might be attained, from the advantageous circumftances that would attend the tranfit in 1769. The great proficience, which the aftronomers made in fettling this fundamental element, beyond what was ever known before, has only raifed their expectations and engaged their attention to improve every advantage, that can be derived from a careful obfervation of this tranfit. If they have not been difappointed by unfavourable weather, we hope for the utmoft certainty that can be gained in this matter, from the obfervations they have made, when they thall be compared together. But after all, we muff fit down with the difagreeable affurance that the diftande of the Sun cannot be determined by them, let them be made with ever fog great accuracy, within many thoufand miles; which will not appear ftrange, when we confider that his diftance is upwards of 94 millions of miles, and that an error of a fingle fecond in his parallax will give an uncertainty of 10 or 1 I millions of miles in his diftance.

This approximation, however, is fo much greater than could be expected, from any other method, that has ever been propofed, that it has defervedly engaged the attention of every civilized nation in the world; and it muft redound to the honor of our fociety, that they have taken fuch effectual care to have proper obfervatories erected, to furninh them with the neceffary inftruments, and to appoint proper perfons, to ufe them on that occafion.

As the credit of our obfervations, and the ftrefs that will be laid upon them, in determining the parallax of the Sun, will greatly depend not only on the care and fkill of the perfons that made them, but alfo on the goodnefs of the inftruments, with which we were furnifhed; it has been judged proper to give the public the following account of our apparatus, and of the pains we have taken to have it in the beft order.
-Vol. I. F As

As the Society were pleafed to appoint Fofeph Sbippen, Efq: Dr. Hugh Williamfon, Mr. Charles Thomfon, Mr. Thomas Prior, and myelf, as a committee to obferve the tranfit at the obfervatory, which they had erected in this city, we fpared neither time nor labour to have every thing neceffary for the obfervation in readinefs. We were provided with an excellent fector of 6 feet radius, made by the accurate Mr. Bird, and an equal altitude and tranfit inftrument, both belonging to the honourable Proprietaries of this province, which the Governor very generounly lent to the fociety on this occafion. Our telefcopes were, a large reflector of 4 feet focus and 7 inches aperture, which magnified from 100 to 400 times with an excellent micrometer of Mr. Dollond's conftruction fitted to it, which the affembly of the province had ordered over at the requeft of the fociety; a refracting telefcope of 24 feet focus, belonging to Mifs Norris; two reflecting telefcopes of 18 inches focus, one the property of Mr. Hamilton, the late Governor of this province, and the other of Mr. Prior, together with another reflector of 12 inches focus. With thefe, and a good time-piece, we promifed ourfelves the pleafure of making accurate obfervations, if the weather hhould prove favourable. For this purpofe we met frequently before the day of the tranfit, to adjuft our inftruments, and to remove every local obftruction that might hinder our obfervations.

Some of us gave particular attention to the regulation of the time-piece, and therefore took the paffage of the Sun's limbs over the crofs hairs of the tranfit inftrument, both forenoon and afternoon for many days before and after the tranfit, and particularly on that day. As it had three horizontal hairs fixed in the focus, it afforded us fix fets of correfponding altitudes, which generally agreed in giving the time of apparent noon within 2 feconds of each other; fo that by comparing them together daily, and applying the proper equations for correfponding altitudes, on account of the Sun's change of declination between the
forenoon and afternoon obfervations, we were affured of the rate of our clock's going and the time of apparent noon to a fingle fecond. We did not think it neceffary to burden our minutes, with the great number of obfervations of this kind, that we made. Let us fuffice to fay, that they were made with the utmoft care, and that our time-piece was fixed to a large poft funk into the ground four or five feet, fecured from fhaking by a brick wall at the bottom, and no ways communicating with the fides of the building.

The long expected day of the tranfit came, fo favourable to our wifhes, that there was not the leaft appearance of a cloud in the whole horizon from morning 'till night, and the $\mathbf{i k y}$ was uncommonly ferene. The committee affembled in the morning at the obfervatory, examined the adjuftment of their teleicopes anew, and appointed two affiftants to obferve the clock, one to count the feconds with an audible voice, and the other to write down the minutes as they were compleated, to prevent a miftake in that article.

Every obferver being fixed at his telefcope, at leaft half an hour before the beginning of the tranfit; we obferved the contacts of the limbs of Venus and the Sun at the times mentioned in the following accounts, as they were drawn up feparately by the obfervers themfelves, and are here inferted in their own words.

Account of tha Contacts, by JOSEPH SHIPPEN, Ese.
"I obferved this very uncommon and curious phœenomenon with a new reflecting telefcope, made by Mr. George Adams, whofe tube is two feet and half an inch long, its aperture 4,15 inches diameter, and its magnifying power about 90 times. After having well adjufted its focal diftance, the Sun's limb appeared fo well defined, that the leaft obfcuration of it might be clearly difcerned by a good eye.
"In order to difcover the firft external contact, as near the precife time of its happening as poffible, I kept conftantly in the field of the telefcope, but a fmall arch of the Sun's limb, and only that part of it, where it was expected the planet would enter; by which means I believe I faw the obfcuration on the limb of the Sun as near the exact time of its beginning as the power of the telefcope would admit of.
" The firft alteration which I perceived in the Sun's difk, was a jagged like appearance on a fmall arch of the limb; as if a fhadow had been caft on it with an irregular notched edge, which at every fecond, feemed to increafe with a kind of waving and tremulous motion. I firt perceived this change at $2^{4} \cdot 13^{\prime} \cdot 47^{\prime \prime}$ apparent time, though I was not then convinced that that appearance was, either the phœnomenon we looked tor, or caufed by the planet's near approach to the Sun's limb; but imputed it rather to fome duft that might accidentally have fallen on the large mirror of the telefcope, as I expected the contact would have fhewn itfelf by one fmall arched indent on the Sun's limb. And it was not 'till after twelve feconds more had paffed, that I was certain the contact had happened; for then, viz. at $2^{\text {b }} \cdot 13^{\prime} \cdot 59^{\prime \prime}$ apparent time, I could plainly diftinguifh a fingle impreffion, or indent, in the Sun's limb; yet it was exceedingly fmall, and without any of the jagged appearance before mentioned.
"I cannot well account for thefe different appearances in fo fmall a fpace of time, but by fuppofing that the firft was occafioned by an atmofphere around the body of Venus, which might have obfcured in a fmall degree, part of the Sun's limb, a few feconds before the contact; and that after Venus herfelf had actually entered on the Sun's limb, the brilliancy of the folar rays might have fo far illuminated the atmofphere of Venus, as to caufe the obfcuration at firft perceived to difappear, and leave only the well defined form of the planet on the Sun's difk.
" On
"On confidering the matter in this view, I am inclined to think that the firft external contact did not really happen 'till at leaft three feconds after I firft perceived the jagged obfcuration on the Sun's limb; and then it would be at $\cdot 2^{\mathrm{h}}: 13^{\prime} \cdot 50^{\prime \prime}$ apparent time.

* But if aftronomers agree to fix the time of the firlt contact at the beginning of that obfcuration, I think it is probable the contact may have happened two or three feconds before I difeerned that obfcuration: In which cafe, the contact may be faid to take place at $2^{\text {b }} .13^{\prime} \cdot 44^{\prime \prime}$ apparent time.
"In determining on the manner in which: I thould judge of the internal contact, I confidered that after Venus fhould move on the Sun's dirk with half her diameter, the horned points occafioned thereby in the Sun's limb would appear more acute, and approach nearer to each other as the planet proceeded till the points fhould actually unite. From this reflection I was induced to think, that the inftant of the clofing of thofe points ought to be fixed on as the precife time of the internal contact; becaufe Venus muft then have paffed the Sun's limb with her whole diameter, and both their circumferences, or limbs, might be faid to coincide.
"I therefore carefully obferved the progrefs of the planet, and faw very diftinetly, as the moved onwards, that the illuminated points of the Sun's limb became better defined; and when they approached fo near each other as to be within about 8 feconds of touching, which was at $2^{\text {b }}$. $3^{1^{\prime}} \cdot 26^{\prime \prime}$ ap. time, I heard one of the obfervers call out, contact; but as his obfervation did not feem to agree with the manner which I had fixed for judging of the contact, I continued viewing with the clofeft attention, in order to fix the time of contact according to the idea I had formed of it ; and at $2^{\text {b }} \cdot 3 \mathrm{I}^{\prime} 34^{\prime \prime}$. ap. time I could fcarcely diftinguih the illuminated points of the Sun's limb to be any longer teparate; for in two feconds more they appeared to be fo far clofed as to form a finule thread of light on that part of the Sun's limb, which a few feconds before had been eclipfed. I therefore

I therefore conclude that the apparent firft internal contact of Venus happened at $2^{\text {b }} \cdot 33^{1^{\prime}} \cdot 34^{\prime \prime}$ ap. time. Yet it is not improbable that her real contact may have happened a few feconds fooner, if it be certain that the has an atmofphere; becaufe that might have obfcured the Sun's limb a few feconds after Venus was entirely immerfed within the difk; in the fame manner as I juiged with refpect to the external contact, that the begioning of the obfcuration of the Sun's limb was occafioned by the intervention of the atmofphere of Venus a few feconds before her body actually came in contact with the Sun."

Account of the Contacts, by Dr. WILLIAMSON.
"I made ufe of a refracting telefcope 24 feet long, which magnifies ninety times. The glaffes were in very good order, and the air uncommonly ferene, fo that the Sun's limb appeared very diftinct and well defined, whence I promifed myfelf the pleafure of fixing the external contact to a fecond, but the event convinced me that I had promifed too much. A dufky appearence once and again drew my attention to a particular part of the Sun's limb, but I could fee no fuch dark fpot there as I thought Venus muft produce, and it was not till $2^{\text {D }} \cdot 1^{11^{\prime}} \cdot 3^{1 \prime \prime}$ mean time, or $2^{\mathrm{n}} .13^{\prime} \cdot 46^{\prime \prime}$ apparent time, that I determined to ftop a watch which I had in my hand, to afcertain the time of $m y$ obfervation, leaft fome accident fhould prevent my hearing the affiftant, who food at 5 or 6 yards diffance by the clock counting feconds. At that very time I was doubtful, whether the appearance on the limb of the Sun was certainly occafioned by the interpofition of the body of Venus; for though the darknefs was of fome extent along the Sun's limb, yet the impreffion-was not proportionably deep, fuppofing that it was made by a circle fo fmall as Venus compared with the diameter of the Sun, nor was the darknefs equally perfect; yet the fubfequent progrefs of the darknefs foon convinced me that I had not been much too hafty in noting the time of the external contact. "When

ASTRONOMICAL PAPERS.

" When Venus had advanced with a little more than half her body on the Sun, her whole eaftern limb appeared faintly illuminated: This light feemed to encreafe as fhe advanced farther on the Sun, till near the time of the internal contact. By this time I was convinced that Venus is furrounded by a denfe atmof phere of a confiderable height, which doubtlefs had prevented my fixing the external contact, with that accuracy I had expected, and had occafioned that inequality in the darknefs, which I had obferved: on the Sun's limb.
"In determining the internal contact, which I apprehend was done with great exactnefs, I attended to the in-ftant, when there was a prefect coincidence of the limb of Venus with the limb of the Sun, as when two circles touch internally. This appeared at $2^{\text {b }} \cdot 31^{\prime} \cdot 24^{\prime \prime}$ apparent time. I expected by the time the affiftant had counted another fecond, to have feen light diftinctly round the eaftern limb of Venus; not fuch a radiance as had for 7 or 8 minutes rendered that part of the planet vifible; but a certain narrow portion of the Sun's limb which had a very diftinguifhable appearance from the light I have mentioned. The edge of the Sun did not appear fo foon; neverthelefs I fixed upon $2^{\text {h }} \cdot 3^{1^{\prime}} \cdot 25^{\prime \prime}$ for the precife time of the internal contact, being certain, that no part of Venus was then off: the Sun. One or two feconds more were counted before the Sun appeared diftinctly without the limb of Venus. But: then it was obvious that Venus did not then touch the Sun's limb in. any part, fo that the contact was certainly over."

Mr. Prior made his obfervations with his own reflecting telefcope, whofe maynifying power he does not cer-tainly know, but fuppofes it to be at leaft an hundred times. He gave the following account of his obfervation of the: contacts, viz.
"The uncertainty where Venus would touch the Sun's: limb made me take the following method. From 8 or 9 minutes paft two o'clock I made it a rule to pafs my eye from the lower edge of the field of my telefcope to the up-
per, many times in a minute, and examine the limb of the Sun ftrictly, in hopes of difcovering the atmofphere of Venus approach, fo as to give an opportunity of taking the contacts of the limbs to a great certainty. In paffing my eye along the limb of the Sun, I difcovered a fmall imperfection, which I thought muft be the ftroke of the atmofphere, but in four feconds I difcovered it to be the limb of Venus, the atmofphere not being vifible on the Sun. The time therefore that I note for my external contact is, when I firft difcovered that imperfection on the Sun's limb, which was at $2^{\text {d }} \cdot 13^{\prime} \cdot 4^{\prime \prime}$ " apparent time. When the body of Venus was fomething more than one third on the Sun, l faw her eaftern atmofphere very diftinctly reflecting the light of the Sun fo ftrongly on the limb of Venus, as to fhew it well defined; but as it came on the Sun, it was entirely loft. The time, I note for my internal contact, was, when the thread of light was diftinctly feen all round the body of Venus, which was at $2^{\mathrm{B}} \cdot 3^{1^{\prime}} \cdot 28^{\prime \prime}$ apparent time."

Mr. James Pearfon, having obferved the external contact at $2^{\text {b }} \cdot 1^{1} \cdot 50^{\prime \prime}$ apparent time, with a fmall telefcope, belonging to the honorable proprietaries of this province, whofe magnifying power is about 60 times; Mr. Charles Thompfon obferved the internal contact with the fame telefcope, of which he gave the following account, viz.
 time, I faw fome tremulous rays of light pafs from the upper or eaftern limb of the Sun to the eye, acrofs, and fo as juft to touch the upper limb of Venus. Marking that down therefore as the time of contact, I counted four feconds, at which time I faw a continued thread of light, like 2 filver lace, but ftill with a tremulous motion, round the eaftern limb of Venus, whereby it appeared to me that the whole body of Venus was then within the difk of the Sun. The tremulous appearance of the rays of light, I at firft attributed to my telefcope refting againft the fide of the obervatory, but afterwards apprehended might be owing to their paffing through the atmofphere of Venus." The

The committee having defired me to ufe the large reflector mentioned above, I chofe that power which magnifies the diameters of objects 300 times; with which I obferved at $2^{\text {h }} .13^{\prime} \cdot 4^{8}$. apparent time, an obfcuration on the north-eaftern limb of the Sun, gradually advancing forwards with a tremulous motion, which, from its irregular and dufky appearance, I concluded was occafioned by the refraction on the Sun's rays through the atmofphere of Venus, which atmofphere foon afterwards became very obfervable to us all. From this I was led to conclude that the contact did not happen till about 15 or 16 feconds afterwards, when there was a large and evident impreffion made on the limb of the Sun; but as the precife moment of the external contact cannot be noted by an obferver, the body of Venus not yet being interpofed between the Sun's limb and the eye; this contact muft have happened about the time that her atmofphere made the abovementioned obfcuration, and therefore I am of opinion that the true time of the contact ihould be accounted at $2^{\text {b }} .13^{\prime} \cdot 4^{\prime \prime \prime}$, or it may be 3 or 4 feconds fooner, when nothing but the atmofphere of Venus, which preceded her body, appeared on the limb of the Sun. About the time that the center of Venus approached the Sun's difk, I faw the whole body of Venus, her eaftern edge being furrounded with a faint light which was doubtlefs occafioned by her atmofphere refracting the Sun's rays. At $2^{\mathrm{h}} \cdot 29^{\prime} \cdot$ 1 $^{\prime \prime}$ " mean time, or $2^{\mathrm{h}} \cdot 3^{1} 1^{\prime} \cdot 26^{\prime \prime}$ apparent time, I faw the internal contact, when the whole body of Venus was introduced within the difk of the Sun, and the thread of light had compleatly furrounded her, although not as bright as it became in two feconds afterwards.

From what has been faid, it appears that the apparent times of the contacts may be reprefented at one view in the following table, as they were noted by the different obfervers.

After the obfervation of the contacts, I applied myfelf to the micrometer to meafure the diameters of the Sun and Venus, and the diftance of their limbs at fundry times during the tranfit. I had indeed frequently meafured the equatorial diameter of the Sun before the day of the tranfit, and always found it to be 6 feconds lefs than what is given in the nautical almanac. The mean of 6 meafures on that day is $3 \mathrm{I}^{\prime} .3 \mathrm{I}^{\prime \prime} .6$, which differs but $0^{\prime \prime}, 3$ or threc-tenths of a fecond from what is given in the faid almanac leffened as above. Therefore I have flated it at $31^{\prime} \cdot 3^{1^{4}} \cdot 3$ in the following reductions and calculations.

Six meafures of the diameter of Venus on the Sun made it 5^{8} feconds. I attempted to meafure it both ways, with the beginning of the divifions of the vernier advanced on the fcale of the micrometer and the contrary, that the error of adjuftment might have been thereby taken away. But the micrometer did not admit of it, the diameter of Venus being a fmall matter too large for this operation. However I took fome meafures this way, but they gave the diameter no more than $55^{\prime \prime} .4$, which appearing too finall were therefore rejected.

About 20 minutes after the contacts, I began to meafure the neareft diftance of the limbs of Venus and the Sun, and continued untill the Sun was fo low, that the meafures could not be made with fufficient accuracy any longer. Some of the meafures appear to difagree too much with the others, and therefore fhould not be depended on; but I could not prevail upon myfelf to neglect the inferting of them; leaf the unufual agreement among fo great a number fhould raife a fufpicion, in the minds of aftronomers, that they had not been honeftly tranfcribed from our minutes; efpecially as there are enough, to anfwer all the purpofes defigned by them, which agree in giving the neareft diflance of the centers with fufficient precifion. Although thefe meafures are fet down in the following table with the parts of a fecond, we would not therefore be fuppofed to affect an impoffible accuracy in them ; but they are fuch as the micrometer has given them when properly reduced.

Mean

ASTRONOMICAL PAPERS. 5 I

The

The foregoing neareft diftances of their centers are deduced from the mealured diftances of their limbs, taking their diameters as they are ftated above: And the parallaxes are not computed, but meafured from a projection of the difk of the earth as feen from the Sun, the projection being 21 inches and an half in diameter.

The latitude of our obfervatory in Philadelphia is determined from the obfervations of Meffrs. Mafon and Dixon with the above mentioned fector. From a mean of thirty obfervations of the paffage of fome fars over the meridian, they found the latitude of the mof fouthern point of the city of Philadelphia to be $39^{\circ} \cdot 56^{\prime} \cdot 29^{\prime \prime}, 2$. Our obfervatory is north of this point, $\mathbf{2 6 , 2}$ feconds, and therefore its latitude is $39^{\circ} \cdot 56^{\prime} 55^{\prime \prime}, 4$.

In order to determine the parallax of the Sun, from the foregoing obfervations, it is neceffary that our longitude from fome fixed meridian hould be afcertained with the moft rigorous precifion. For this purpofe we have obferved various eclipfes of Jupiter's fatellites, that they might be compared with the correfpondent obfervations made at Greenwich and elfewhere, when we are furnifhed with them.

Eclipfes of JUPITER's SATELLITES, obfarved at PLiladelpbia, with a two feet refketor.

Since the foregoing account has been drawn up, we have been furnifhed with fome obfervations of the eclipfes of Jupiter's fatellites, made by the revd. Mr. Maikelyne, aftronomer royal, at Greenwich. By comparing thefe with the like obfervations made at Philadelphia and Norriton, we are enabled to fettle the longitudes of our obfervatories.

But as there are but two or three of them correfpondent with ours, we muft have recourfe to another method; which is firft to compare them with the calculations in the nautical almanac, which were made for the meridian of Greenwich, that the error of the tables may be difcovered by the mean of them; and then to compare ours with the fame calculations, applying the errors of the tables to the longitude deduced from this comparifon. We may depend upon the refult of this method with much more confidence, than upon any fingle obfervation.

Here follow the Apparent Times of the Greenwich Obfervations compared with the calculations of the Nautical Almanac.


```
54 MATHEMATICAL AND
    The Norriton obfervations of the eclipfes of Jupiter's firft Satcllite are as follow.
```

D. h. m. fec.
1769. Feb. 16, 14. 21.10 Im .1 ? $23,16,15.1 \mathrm{Im} .1 / \mathrm{l}$. April 3, 14, 49. $25 \mathrm{Im} .1 / 7$. 10, 16. 46. © $\mathrm{Im} . \mathrm{i} / \mathrm{f}$. $12,11.14 .37 \mathrm{~lm} . \mathrm{I}^{\prime}$.
May 5, II. 29. 27 lm . iff.
1769. D. h. m. fec.

May 14, 10. 2. 14 Em. If doultful.
21, 11. $55.13 \mathrm{Em} .1 /$.
Gane 6, 10. $11.32 \mathrm{Fm} .1 / 2$.
7, 8. $43.44 \mathrm{Em} .2 \%$.
13, 12. 5. 1 Em. 1/f.

Now if we compare the correfpondent obfervations at Philadelphia and Norriton on the 1 6th of February, the 12 th of April, the 5 th of May, and the 7 th of June 1769 , the difference of our meridians will be found from the mean of them to be 57 feconds of time. This is farther confirmed by the obfervations we have made on the tranfit of Mercury over the Sun, on the 9th of November, 1769, which being compleated before thefe fheets were printed off, we have judged proper to infert.

Therefore the mean of both thefe makes the difference of our meridians 56 feconds of time, which muft certainly be more accurate than what is deduced from a few correfponding obfervations of the eclipfes of Jupiter's fatellites; both becaufe they afford 24 comparifons, all nearly agreeing among themfelves, and becaufe thefe tranfits, in the judgment of moft aftronomers, afford the beft opportunities of fettling the longitude of places. Hence if we add 56 feconds to the time of the Norriton obfervations of the eclipfes of Jupiter's fatellites, they will be reduced to the meridian of our obfervatory in Philadelphia, and may be ufed in fixing our longitude from Greenwich, in the following manner.

e calculated time per Nautical Almanac. D. h. m. fec. 7. May 30, 15. 16. 1o Em. 1f. fune 13, 14. 17.37 Em. $2 d$. 8. Mar. I, 14. 48. $24 \mathrm{Im} .1 /$ f. April 9, 15. 36. 34 Em .1 ff . $25,13.57 .46 \mathrm{Em} .1 / \mathrm{f}$. May 12. 15. 34. 11 Em. 2d. 9. Feb. 16. 19. 22. 29 Im .1 1f. 16, 19. 22. $29 \mathrm{~lm} .1 \beta$. 20, 2). 42. $55 \mathrm{~lm} .2 d$. 23, 21. 16. $35 \mathrm{Im} .1 /$ f. 23, 21. 16. $35 \mathrm{Im} .1 /$. Mar. 17. 17. 46. $4 \mathrm{Im} .2 d$. April 3, 19. 51. 24 Im. 1/f. 3, 19. 51.24 Im .1 1 . IU, 2I, 47. $14 \mathrm{Im} .1 \beta$. II, 14. 50.4 Im .2 d . 12, 16. 16. $13 \mathrm{Im} .1 /$. 12, 16. 16. $13 \mathrm{~lm} .1 \beta$. May 5, 16. 31. 20 Im . 1 f. $5,16.3 \mathrm{I} .20 \mathrm{Im} .1 \mathrm{~A}$. 21, 16. 56. 49 Em .1 f. Fune 6, 15. 12. 59 Em .1 I f. 7, 13. 45. 13 En. 2 d. $7,13.45 . I_{3} \mathrm{Em} .2 \mathrm{~d}$. 13, 17 . 6. 3 I Em .1 f. 22, 13. 28. 30 Em .1 If. 29, 15. 22. 11 Em. 1ρ. Aug. 23, 12. 15. 49 Em. If. Sctit. 1I, 12. 45.10 Em. $2 d$.		The Norriton obf. red. to the merid. of Phil. D. h. m. fec. 16, 14. 22. 6 23, 16. 15. 57 $\begin{array}{cccc}\text { 3, } & 14, & 50 . & 21 \\ 10, & 16 . & 46 . & 56\end{array}$ 12. 11. 15. 33 5, 1I. 30. 23 $\begin{array}{rlll}\text { 21, } & 11 . & 56 . & 9 \\ 6, & 10 . & 12 . & 28\end{array}$ 7, 8. 44. 39 13. 12. 5. 57	

Now if we take the mean of all the 21 foregoing determinations of our longitude from Greenwich, by the eclipfes of the firft fatellite, rejecting only thofe of March Ift, and April 9 th, 1768 , which differ molt from the others, the refult will be $5^{\mathrm{D}} \cdot 0^{\prime} \cdot 35^{\prime \prime}$ for the difference of our meridians. Thefe ought evidently to be rejected, as they differ near twice as much, from the mean of the reft, as any other of the determinations do, yet the retaining of them will make no difference in the refult. If the mean determination of the longitude be taken from the immerfions alone, rejecting that of the ift of March, $1 ; 63$, it will be $5^{\mathrm{b}} \cdot 0^{\prime} \cdot 36^{\prime \prime}$, and if from the emerfions alone, it will be 5^{B}. $0^{\prime} \cdot 34^{\prime \prime}$, when the obfervation of the $9^{\text {th }}$ of A pril, 1768 , is excluded. Therefore the mean of both, (which fhould always be preferred,) is $5^{\text {h }} \cdot 0^{\prime} \cdot 35^{\prime \prime}$.

As a farther confirmation of this conclufion; if this difference of meridians be applied to the Greenwich obfer-
vations

MATHEMATICAL.AND
vations, of the firft fatellite, rejecting that of the 16 th of May, to reduce them to the meridian of Philadelphia, and if they are then compared with the calculations in the nautical almanac; we fhall have the fame refult from them alfo.

The mean of thefe determinations of the longitude, from the Greenwich obfervations of the firft fatellite, is $5^{\mathrm{b}} .0^{\prime}$. $35^{\prime \prime}$. But farther if we take the mean of all the determinations, derived from the eclipfes of the fecond fatellite, it will be found to be $5^{\mathrm{b}} \cdot \circ^{\prime} \cdot 37^{\prime \prime}$. And laftly, if the mean of all the determinations from the eclipfes of both firft and fecond fatellite be chofen, the deduced longitude will be $5^{\mathrm{h}} \cdot 0^{\prime} \cdot 35^{\prime \prime}$. So that we may fafely conclude, that the difference of meridians between Philadelphia and Greenwich, is $5^{\prime \prime} \cdot 0^{\prime} \cdot 35^{\prime \prime}$; and that Norriton is $56^{\prime \prime}$ of time weft of Philadelphia, and its longitude is $5^{\text {n }} \cdot \mathbf{I}^{\prime} \cdot 3 \mathbf{1}^{\prime \prime} \cdot$ weft. With this determination we muft be contented until farther obfervations are made, by which it may be confirmed, or rendered liable to exception.

Thefe obfervations are fufficient to determine every thing relative to the theory of Venus, and the parallaxes of the Sun and planets, as may be feen by the annexed projection of the tranfit, and the following calculations. Although the parallax of the Sun may be obtained from the obferved neareft diftance of the centers of the Sun and Venus, yet this method cannot be fo much depended on, as the comparifon of the contacts of the limbs obferved in proper places, where the abfolute difference of time is confiderable. Neverthelefs, as the public feem very impa-
tient to know the refult of what was done in this place, I have endeavoured to deduce it from our obfervations alone; and flatter myfelf, that in the conclufion it will be found pretty accurate; as it is nearly the fame with what I had before found it to be, by an hundred and forty determinations of it, from the obfervations of aftronomers on the tranfit of 1761; and alfo from another method, the invention of the celebrated Mr. Stuart, of Edinburgh; both which I have now annexed to the following calculations.

Having thus collected together all the elements neceffary for the enfuing calculation, before I proceed to it, I muft in juftice to Dr. Williamfon and Mr. Prior, obferve, that of the micrometer meafures, the $2 \mathrm{~d}, 3 \mathrm{~d}, 19$ th, $20 \mathrm{th}, 2 \mathrm{Ift}$, $22 \mathrm{~d}, 23 \mathrm{~d}, 24$ th, and 25 th were made by Mr. Prior, and the $35^{\text {th }}, 43^{\mathrm{d}}, 44^{\text {th }}$, and $54^{\text {th }}$ by Dr. Williamfon, with the fame adjuftment of the focus, that I ufed in the others.

I have taken the trouble of making above fifty determinations of the middle of the tranfit, and find from a mean of them, that the neareft approach of their centers was at $5^{\mathrm{b}} \cdot 2 \mathrm{I}^{\prime} \cdot 27^{\prime \prime}$ mean time, or $5^{\mathrm{b}} \cdot 23^{\prime} \cdot 41^{\prime \prime}, 7$ apparent time, which was haftened by parallax $4^{\prime} \cdot 48^{\prime \prime}$ at Philadelphia; and therefore, that the central apparent time of the middle of the tranfit was $5^{\mathrm{B}} \cdot 28^{\prime} \cdot 29^{\prime \prime}, 7$, according to our meridian.

By comparing together eighteen determinations of the neareft diftance of the center of the Sun and Venus, I find the mean of them to be $10^{\prime} \cdot 3^{\prime \prime}, 58$, as feen in Philadelphia. But the was then depreffed $6^{\prime \prime}, 9$ I by parallax ; and therefore, the geocent. neareft diftance of the centers was 10^{\prime}. $10^{\prime \prime}, 49=610^{\prime \prime}, 49$. Therefore fay,

As 72626,45 the diftance of $\%$ from the $\odot: 28879,55$ her difance from $\Theta:=610,49$: heliocentric diftance of their centers.

$$
\text { 4. } 861,0949
$$

$$
\text { 4. } 460,5904
$$

$$
\text { 2. } 785,6785
$$

7. 246,2689
8. $3^{8} 5,1740=242^{\prime \prime}, 7583=4^{\prime} \cdot 2^{\prime \prime}, 7583$ the heliocentric diftance of their centire As $S, 3^{\circ} \cdot 2.3^{\prime} 20^{\prime \prime}$ the incl. of $\%$ orbit to the eclip. $: R:: S, 4^{\prime} \cdot 2^{\prime \prime}, 758:$ Sine of \odot^{\prime} s dift. from the node of 9 .
9. 771,6803
10. 070,2506
11. $291,5703=1^{\circ} \cdot 8^{\prime} \cdot 20,23 \odot$ dift. from the mode of q.

Vol. I.

Now fuch is the peculiarity of the orbit of Venusand her horary motion at that time, that we may indifferently fay,

As $S, 1^{\circ} .8^{\prime}, 20^{\prime \prime} \cdot 23$: Rad : : S, $10^{\prime} .10^{\prime \prime}, 49: S$, of the angle of her vifible path with the ecliptic 8°. 33^{\prime}. $11^{\prime \prime}, 5$.
Or as T, $, 4^{\prime} \cdot 2^{\prime \prime} \cdot 7583: \mathrm{T}, 10^{\prime}: 10^{\prime \prime}, 49:: \mathrm{S}, 3^{\circ} \cdot 23^{\prime} \cdot 20^{\prime \prime}: \mathrm{S}$, of the angle of her vifible path $=$ 8°. 33^{\prime}. $12^{\prime \prime}, 3$.
Or lafly, if it fhould be deemed more eligible to deduce her horary motion from the foregoing meafures, and from a comparifon of it with the horary motion of the Sun, to deduce the angle of her vifible path, it may be done in the following manner, and will be found to be nearly the fame.

For let A B reprefent the horary motion of $\odot=2^{\prime} \cdot 392375$ (fee fig. 2. pl. 4.)
B A C=the inclination of the orbit of q with the ecliptic $=3^{\circ} .23^{\prime} .20^{\prime \prime}$. .
A $\mathrm{C}=$ the horary motion of $\wp=3^{\prime} .952942$, as it may be deduced from the faid meafures.
Then the angle DBC will reprefent the vifible path of $\%$ with the ecliptic, and may be found as follows:
Let ${ }^{\prime} .392375=$ horary motion \odot

$$
3.922942=\text { horary motion } \%=237^{\prime \prime} .17652 \text { whofe Log. is } \quad 2.375 .0716
$$

As $6.345317=$ fum of their horary motions 0.802,4534
Isto $1.560567=$ difference of their horary motions - . - $0.193,2825$
So is cot. of half of $3^{\circ} \cdot 23^{\prime}$. $20^{\prime \prime}$, or cot: 1°. $41^{\prime} \cdot 40^{\prime \prime}$ - . . $11.528,945 \mathrm{I}$
To T, of half the diff. of the angles at $\mathrm{B} \& \mathrm{C}=83^{n} .81 .27^{\prime \prime} .2=10.919,7742$
To which add half the fum of do. - - 88. 18. 20
171. 26 47,2 and the fupl: of this is $8{ }^{\circ} 33^{\prime} .12^{\prime \prime}-8$, the angle of the vifible pach of $\%$ $916,65=$ the difference of the femidiameters of \odot and q $610,49=$ the geo. nearell diftance of their centers.

Sum, 1527,14=3. 183,8789
Dif. 306,16=2. 485,9484
ternal contacta.
2)5. 669,8273 the log. of the fquare of half the tranfit line between the in2. $834,9 \times 36=$ the log. of half the tranit
$237^{\prime \prime} 17652=2$ 2. $375,0716=$ the log. of q bor. mot.
O. $459,8420=2 h .882982=2 h .52^{\prime} \cdot 58^{\prime \prime}, 7=$ the femidn. between the in. cone.
$974,65=$ the fum of the femidiameters of \odot and 9 610,49=the geo. nearefl diftance of their centers.
Sum, 1585,14 3. 200,0677
$\begin{array}{lll}\text { Diff. } 364,16 & \text { 2. } 561,2922\end{array}$
2)5. 761,3599
2. $880,6799=$ he log. of half the tran. line between the ext. $c 0 .=759^{11}, 766$ 2. $375,0716=$ the log. of q hor. mot.
0. $505,6083=3$ h. $20338=3$ h. $12^{\prime}, 12^{\prime \prime}, 168=$ the femiduration between the
external contalas.
As R:Sec. $8^{\circ} \cdot 33^{\prime} \cdot 11^{\prime \prime}, 5:: 6 \mathrm{Id}^{\prime \prime}, 49:$ geo. latitude of $\%$
10. - - -
10. 004,8572
2. 785,6785
2. $790,5357=617^{\prime \prime}, 356=10$. $17^{\prime \prime}, 336=$ che geo. lat. of 9

A 72626,45: 28879,55:: geocentric latitude : heliocentric latitude of 우
4. 861,0949
4. 460,5904
2. 790,5357
7. $251,126 \mathrm{I}$
2. $390,0312=245^{\prime \prime}, 4885=4^{\prime} \cdot 3^{\prime \prime}, 4885=$ the beliocentric latitude of 8

From the apparent time of the middle of the tranfit, viz. $5^{\mathrm{b}} \cdot 28^{\prime} \cdot 29^{n}, 7$ deduct $23^{\prime} \cdot 13^{\prime \prime}, 65$ and the apparent time of the ecliptical conjunction will be $5^{\mathrm{h}} \cdot 5^{\prime} \cdot 1 \mathrm{I}^{\prime \prime}, 05$, when the Sun's place given in the nautical almanac was $2^{\prime} .13^{\circ} .27^{\prime} .18^{\prime \prime}, 7$, making the difference of our meridian from Greenwich $5^{\text {n. }} \cdot 0^{\prime} 35^{\prime \prime}$, as found above. To his place in the ecliptic add his diftance from the node of Venus, found above, viz. $1^{\circ} .8^{\prime \prime} \cdot 20^{\prime \prime}, 23$, and the fum gives the place of her afcending node, $2^{2} \cdot 14^{\circ} \cdot 35^{\prime} \cdot 38^{\prime \prime}, 9$.

From the middle of the tranfit, as feen at the center of the earth, viz. $5^{\mathrm{h}} \cdot 2^{\prime} \cdot 2^{\prime \prime}, 7$, apparent time, deduct the femiduration between the internal contacts, viz. $2^{\text {n }} \cdot 5^{\prime} \cdot 58^{\prime \prime}, 7$ and there remains $2^{\text {n }} \cdot 35^{\prime} \cdot 31^{\prime \prime}$, the apparent time of the firft internal contact, without parallax. This I obferved at $2^{\text {h }} \cdot 3 \mathbf{1}^{\prime}{ }^{\prime} 6^{\prime \prime}$ apparent time; the difference between thefe is the total effect of parallax in longitude and latitude, which is $4^{\prime} \cdot 5^{\prime \prime}$. But upon the fuppofition that the Sun's horizontal parallax, on the day of the tranfit, was $8^{\prime \prime}, 5204$, the total effect of parallax thould have been $4^{\prime} \cdot 4^{\prime \prime}$. Therefore fay,

As $4^{\prime} \cdot 4^{\prime \prime}=244^{\prime \prime}: 4^{\prime \prime} \cdot 5^{\prime \prime}=245^{\prime \prime}:: 8^{\prime \prime}, 5204: 8^{\prime \prime}, 555=$ the hor. par. of the Sun on June $3^{d}, 1769$. Then

As $100000=$ his mean dift. from the earth : $101.506=$ his dift. on the day of the Tranfit, $:=8^{\prime \prime}, 555: 8^{\prime \prime}, 6838$ his horizontal parallax at his mean diftance from the earth.

This is nearly the fame, with what is deduced from the beft of the obfervations made on the tranfit of 176 r : And according to this parallax of the Sun, the mean diftances of the planets from the Sun will be, as they are exhibited
in the following table, taking a mean femidiameter of the earth 3985 Englifh miles.

94790550 the Earth's Mean diftance from the Sun, 1444314 CO Mars's \quad in Englifh miles. 493005300 Jupiter's 904307200 Saturn's

On account of the difficulty of afcertaining the precife moment of the middle of the tranfit, from the menfurations of the neareft diftances of the limbs of the Sun and Venus, and the finall difference of time between the contacts happening, at the center of the earth, and at any particular place on its furface; aftronomers have generally preferred the comparifon of two obfervations at proper places, where the effects of parallax will be contrary to each other, retarding the contacts at one place and accelerating them at the other, for the purpofe of deducing the parallax and diftance of the Sun from them. We have an opportunity of confirming the former conclufions, by comparing our obfervations with thofe that have been made at the royal obfervatory at Greenwich, as they have lately come to hand. They differ indeed confiderably among themfelves, probably owing to the various methods, which the obfervers took to judge of the contacts, the account of which is not yet arrived here; yet they give a mean parallax of the Sun nearly the fame that we have deduced from our own obfervations at Philadelphia. I have therefore inferted them in this account of the tranfit, as they ferve to fhew that we have not loft our labour and expence on this occafion. The method I have ufed is firf to reduce the Greenwich obfervations of the contacts to the meridian of our obfervatory in Philadelphia, by deducting from them the difference of longitude converted into time; and then- to calculate the effect of parallax for both places at the apparent times of the contacts, upon the fuppofition of the Sun's horizontal parallax
parallax being $8^{\prime \prime}, 5204$ on the day of the tranfit. From this, the Sun's horizontal parallax is found either greater or lefs, as the calculated effect of parallax is greater or lefs, than what is obferved.

The parallax of Venus in longitude at Greenwich, at the time of the firft external contact was $1^{\prime \prime}, 9$, which haftened the contact there $4^{\prime} \cdot 16^{\prime \prime}, 5$, and her parallax in latitude at the fame time was $12^{\prime \prime}, 97$, which depreffed her on the difk of the Sun, lengthened her vifible path, and accelerated the contact $2^{\prime} \cdot 34^{\prime \prime}, 5$, fo that the total effect of her parallax was to haften the contact $6^{\prime} \cdot 5^{\prime \prime}$ of time. In like manner her parallax in longitude at the internal contact was $\mathrm{f} 6^{\prime \prime}, 6$, which haftened it $4^{\prime} .12^{\prime \prime}$ of time; and her parallax in latitude being $1^{\prime \prime}, 44^{2}$ at that time, for the fame reafon haftened the faid contact $2^{\prime} \cdot 40^{\prime \prime}$; and therefore the total effect of parallax to accelerate the internal contact at Greenwich is $6^{\prime} \cdot 5^{\prime \prime}$.

At Philadelphia her parallax in longitude being $10^{\prime \prime}, 74$ at the external contact, haftened it $2^{\prime} .43^{\prime \prime}$; and her parallax in latitude being $4^{\prime \prime}, 43$, lengthened her vifible path on the Sun and haftened the contact $53^{\prime \prime}$ of time; whence its total effect was $3^{\prime} \cdot 3^{\prime \prime \prime}$ of time. In like manner her parallax in longitude at the internal contact being $\mathrm{II}^{\prime \prime}, 95$ haftened it $3^{\prime} \cdot 1^{\prime \prime}$ of time, and her parallax in latitude being $4^{\prime \prime}, 49$ lengthened the tranfit line, and haftened the contact $1^{\prime} \cdot 3^{\prime \prime}$; and therefore the total effect of her parallax at that time to haften the internal contact was $4^{\prime} \cdot 4^{\prime \prime}$.

Now as the total effect of parallax both at Greenwich and at Philadelphia confpired to haften the contacts at both thefe places, with refpect to the center of the earth, their difference is the whole effect they have on abfolute time, viz. $3^{\prime} \cdot 15^{\prime \prime}$ at the external contact, and $2^{\prime} \cdot 48^{\prime \prime}$ at the internal contact.

The contacts were obferved at Greenwich at the apparent times mentioned in the following table, according to their meridian.

External

62 MATHEMATICAL AND

External Contal.		
h.	m.	fec.
7.	10.	54
7.	11.	11
7.	10.	37
7.	11.	19
7.	11.	30
7.	10	58

Intermal Contact. h. m. fec.			
7.	28.	47	by Hitchime
-	-	-	Hira.
7.	29.	28	Dan.
7.	29.	20	Dollond.
7.	29.	20	Nairne.
7.	29.	23	Makcelyne.

Thefe times are reduced to the meridian of Philadelphia, by fubftracting $5^{\mathrm{h}} \cdot 0^{\prime} \cdot 35^{\prime \prime}$ from them in the following manner.

External Contact.		
h.	m.	fec.
2.	10.	19
2.	10.	36
2.	10.	2
2.	10.	44
2.	10.	55
2.	10.	23
2.	10.	30

Internal Contaet.		
h.	m.	fec.
2.	28.	12
	by	Hitchins.
2.	28.	-
2.	28.	Hirf.
2.	28.	Dun.
2.	28.	45
Dollond.	Nairne.	
2.	28.	40,6

The mean of all the times of the external contacts at Philadelphia is $2^{\mathrm{b}} \cdot 13^{\prime} \cdot 46^{\prime \prime}, 6$, and of the internal contacts $2 \mathrm{~h} .3 \mathrm{I}^{\prime} \cdot 28^{\prime \prime}$, as appears by page 49, and the difference between thefe means is the obferved effect of parallax.

h.	m.	fec.
2.	13.	46,6
2.	10.	30
	3.	16,6

h. m. fec.
2. 3r. 28 tet Philadelphia.
2. 28. 40,6 at Greenwich.
3. $\mathbf{1 6 , 6}$
2. 47,4 the obferved effects of parallax, at the external and internal contacts. Therefore fay,

As $3^{\prime} \cdot 15^{\prime \prime}=195^{\prime \prime}$ the calculated effect of parallax at the external contact is to $3^{\prime} \cdot 16^{\prime \prime}, 6=196^{\prime \prime}, 6::$ So is the affumed horizontal parallax of the Sun on the day of the tranfit $8^{\prime \prime}, 5204$: to his true parallax on that day. And in like manner, as $2^{\prime} \cdot 48^{\prime \prime}=168^{\prime \prime}: 2^{\prime} \cdot 47^{\prime \prime}, 4=167^{\prime \prime}, 4::$ $8^{\prime \prime}, 5204$: the Sun's parallax on that day.

As $100000: 101506:: 8^{\prime \prime}, 54014$: the Sun's horizontal parallax at his mean diftance from the earth.

$$
\text { 5. } \infty 0,0000
$$

5. 006,4917
o. 931,4650
6. $937,956 \%=8^{\prime \prime}, 66875$ the Sun's hor. pars. at his mean diiflance from the earth.

The

The parallax of the Sun being fixed by the mean of fuch comparifons as thefe, it is an ealy matter to afcertain not only the diftances of the badies, which compofe the folar fyftem, but alfo their real diameters; that of the: earth being previoully known from the actual menfuration of fome degrees on it's furface. For

As the rectangle of the parallax of the Sun, and his diftance from the earth, is to the real diameter of the earth; fo is the rectangle of the parallax and diftance of any other planet from the Sun, to its real diameter.

As to my delineation of the tranfit, I bave taken the elements of the projection from our own obfervations on the 3d of fune, $1769 . \quad$ Plate 4, fig, 2 .
${ }^{\top}$ HE neareft approach of the centers having been determined, from the mean of a great number of computations, and found to agree very nearly with the meafures that were actually made at the middle of the tranfit, it was accordingly fet off on the diametef of the Sun, and through this point a chord was drawn at right angles to the faid diameter for the central tranfit line. This was then divided carefully into hours and minutes, according. to the horary motion of Venus, determined by the preceding calculation, in fuch a manner, as that the exact moment of the middle of the tranfit, at the earth's center. fhould fall on the point of interfection between the faid diameter of the Sun and tranfit line; this moment of time having been previoufly determined, by the mean of a fufficient number of computations.

The parallaxes of Venus, in longitude and latitude, as. feen from Philadelphia, having been alfo adapted to the apparent times of the micrometer meafures, on the fuppofition of the Sun's horizontal parallax being $8^{\prime \prime}, 5204$ on the day of the tranfit, they were accordingly applied to the projection, by which the places of her center were determined. for the faid times. Round thefe, fmall circles were drawn, with the radius of 29 feconds, to reprefent the difk of

Venus

Venus on the face of the Sun; andlines were drawn between the limbs, in the direction of their centers, of fuch a determined length, as the micrometer has given them. Many of the meafures were taken from the fartheft limb of the Sun, as well as from the neareft, to both limbs of Venus, and thefe meafures were afterwards reduced to the neareft diftance of the neareft limbs, as they are exhibited in the preceding table, ufing the diameters of the Sun and Venus, as they are ftated above.

As a confirmation of the foregoing conclufions, I have fubjoined the obfervations of aftronomers, in different places, of the contacts and durations of the tranfit of 1761 , as they have fent them to the Royal Society, together with the longitudes and latitudes of the places of obfervation, on which the following calculations depend.

OBSERVATIONS on the Transit of VENUS over the SUN, June 6th, 1761 , N. S. Apparent Time.					
			8. 8 8. 19	3. 33.	
Saxille Hoore,			8. ${ }_{\text {8. }}^{18}$		
通			8. ${ }^{\text {8. }}$ 8. ${ }^{\text {8.2. }}$		
			28. 2		
Bolongna,					
Rome, Dront			. 36		
Tomea,			$\left.\begin{array}{l} 9 \cdot 54 . \\ 54 \\ 10 \end{array} 2_{2}^{8}\right\} \mid$		
nethurg,		4.19. 5	10. 8. 59		
			${ }_{12}^{9}$		
		7. 47.5	13. 39. ${ }^{88}$		

	Toboljki \& Saville bowfe. h. m. fec. Parall. 2. 49. 20 3. 4. 33. 22 35 8.	Tobolki \& Spittal Square. h. m. fec. Parall. 111 12. 49. 20 5. 35 4. 33 . 9
$\begin{array}{ll}\text { 8. } 15.48 \\ \text { 8. } 18.4 & 48\end{array}$	8. 15.58 8. 18. 28 1. 12	8. 16. 11 8. 18.41 1. II
$\begin{aligned} & \text { 2. } 16 \\ & \text { Sun's Par. } 8^{\prime \prime}, 02 \end{aligned}$	2. 34.	2. 30 Sun's Par. $8^{\prime \prime}, 85$ $2 . \quad 24$
Tobolfai F Kume. 12. 49. 20 3 35 3. 42. 59	Toboljki \& Calmar. 12 49. 20 3. 3. 27. 13	Tabol/ki \& Upfal. 12. 49. 20 3. 35 3. 22. 26
Tbolfi 6 Stockbolm	Tibolfi \& Calcutta.	Tabolki \& Madra/s.
12. 49. 20 3. 35 3. 20. 26	12. 49.20 3. 35 1. 20. 52	$\begin{array}{ll} \text { 12. 49. } 20 \\ 0.47 .18 \\ \hline \end{array}$
$\begin{array}{lll} \text { 9. } 28 . & 54 \\ \text { 9. } & 30 . & 10 \\ \hline \end{array}$ 2. 18	$\begin{array}{llll} 14 & 10 . & 12 \\ 14 . & 11 & 34 \\ \hline \end{array}$ $\text { 2. } 14$	13. 36. 38 13. 39. 38 0. 36
$\begin{aligned} & \text { 1. I6 } 17 \\ & \text { Sun's Par. } 8,39 \end{aligned}$	$\begin{aligned} & \text { I. } 22 \\ & \text { Sun's Par. } 8,61.21 \end{aligned}$	${ }^{3 \cdot} \stackrel{0}{\text { Sun's Par. } 8 \times 55}$
Cajuneburg \mathcal{G} Saville boufe. 10. 8. 59 2. 59 1. 52. 20	Cajenburg E'Spittal Square. 10. 8. 59 2. 59 1. 52 . 7	Cajaneburg F Gresn wich. 10. 8. 59 $\frac{1.51 .50}{8.59}$ 2. 59
8. 16. 39 8. 18.22 1. II	8. 16. 52 8. 18. 41	8. 17. 9 8. 19. 0 1. 11
 Sun's Par. 8". II	$\begin{aligned} & \text { 1. } 49 \\ & \text { Sun's Par. } 8,58 \\ & \hline \end{aligned}$	I. 51 1. 48 Sun's Par. 8,74
$$	Cajaneburg \mathcal{F} Rome. 12. 8. 59 2. 59 1. 2 . 7	Cajaneburg E'Bologna. 10. 8. 59 1. 6. 29 2. 59
8. 26.25 8. 28.27 0. 54	$\begin{array}{ll} \text { 9. } & 6.52 \\ 9 . & 9.36 \\ \hline \end{array}$	9. 2. 30 9. 4. 57 0. 29
2. Sun's 2 Par. 8.30 $0^{\text {2. } 5}$	2. 44 Sun's Par. 8,33	\qquad
		tockbolm Er Greenwich.
10. 8. 59 3. 28. 20	$\text { 1. 12. } 43$	9. 30.10 2. 18 1. 12. 20
$\begin{array}{ll} 13.37 \cdot 19 & 0.36 \\ 13.39 .3^{8} & \\ \hline \end{array}$	8. 17. 37 1. 13. 41	8. 17.50^{-} 8. 19. 0
$\text { 2. 19 }{ }^{\text {Sun's Par. } 8.27^{2.23}}$	1. 4 Sun's Yar. 8, 12	$\begin{aligned} & \text { I. } \text { Io }^{\text {I. }} 7 \\ & \text { Sun's Par. } 8,88 \end{aligned}$
Stockbolm © Paris. 9. 30. 10 218 1. 3. 10 20	Stockbolm E' Bologna. 9. 30. 10 2. 18 0. 27. 5	Stockbolm \mathcal{F} R Rome. 9. 30.10 2. 18 0. 22. 33
8. 27.0 8. 28.27 0. 54	9. 3. 5 9. 4. 57 0. 29	9. 7. 37 9. 9. 36 O. I3
$\text { I. }{ }_{\text {Sun's }}^{27} \text { Par. } 8,80^{\text {I. } 24}$	$\text { I. } 52 \text { I. } 49$	\qquad

AND

The parallax of the Sun may alfo be deduced from the total duration of the tranfit, as obferved in different places,
in the following manner.

Cajanebwrg.	quebar $0<1 /$ obol/ki.	Madras \& Stockbolm.
h. m. fec. Parall.	h. m. fec. Parall.	Parall.
5. 51.33 6. 24	5. 5r. 33 6. 24	5. 51.43 6. 33
5.49.54 8. 5	5. 48. 50 9. 3	5. 50.42 7. 34
I. 39 $8 u n ' s$ Par. $8^{\prime \prime}, 3,31$	$\begin{aligned} & \text { 2. } 43 \\ & \text { Sun's Par. } 87,67 \\ & \hline \end{aligned}$	Sun's Par. 84,50
Madras \& Tornea.	Great Mount \& 1 bo.	Great Mow 6 \& Tobolfi.
5. 51.43 6. 33	5. 51. 20 6. 33	5. 51.20 6. 33
5. 50. 9 8. 7	5.50. 9 7. 46	5.48. $50 \quad 9$ 9. 3
$\begin{aligned} & \text { I. } 34 \\ & \text { Sun's Par. 8,50 } 34 \\ & \hline \end{aligned}$	1. II ${ }_{\text {Sun's Par. } 8,26}^{13}$	$\begin{array}{ll} \text { 2. } 30 \\ \text { Sun's Par. } 8,50^{2 .} 30 \end{array}$
Cajaneburg \& Upfal.	Cajancburg \& Calmar.	Tabolki ETAbo.
5. 49. 54 8. 5 5. 50. 26 7. 33	5. 49. 54 8. 5 5. 50. 39 7. 21	
Sun's $_{32}$ Par. 8,50 32	9. ${ }^{45}$, 8 's Par. 8,70	1. 19 \qquad Sun's Par. 8,72

The parallax of the Sun may alfo be determined, by comparing the times of the internal contacts, as obferved in various places, with the time of their happening as obferved at the center of the earth. For this purpofe the following elements are ufed, as they were calculated by Mr . Short, from the meafures made at the tranfit in 176 I , viz. the diameter of the Sun $31^{\prime \prime} .31^{\prime \prime}$, the diameter of Venus $59^{\prime \prime}$, her horary motion $3^{\prime}, 59^{\prime \prime}, 8$, the angle of her path $8^{\prime} \cdot 30^{\prime \prime} \cdot 10$, the neareft diftance of their centers $9^{\prime} .3^{\prime 2}$, and the difference of their horizontal parallaxes $21^{\prime \prime}, 35$. Hence the apparent time of the 1 it and 2 d internal contacts was $2^{\mathrm{b}} \cdot 2^{\prime} \cdot 3^{\prime \prime}$, and $8^{\mathrm{b}} \cdot 20^{\prime} \cdot 4^{\text {II }}$, reckoned by the meridian of Greenwich, without parallax, and the central duration was $5^{\mathrm{h}} \cdot 5^{8^{\prime}} \cdot \mathrm{I}^{\prime \prime}$.

	Central Time \& Madras. 2. 22. 3 0. 0 5. 20. 10 7. 42.13 7. 47. 55 5. 57 5. 42 Sun's Par. 8,14	

The Sun's parallax deduced from the obferved and calculated times of the $2 d$ internal contad.

		The

ASTRONOMICAL PAPERS

The Sun's parallax is alfo found, by comparing the total duration between the internal contacts, as it was obferved in different places, with the duration at the center of the earth, viz. $5^{4} \cdot 5^{\prime \prime} \cdot 1^{\prime \prime}$.

The mean of all the preceding determinations of the Sun's parallax is $8^{\prime \prime} 5^{2}$ on the day of the tranfit, in June, 1761, which gives $8^{\prime \prime} 65$ for his horizontal parallax at his mean diftance from the earth.

Mr. Stuart of Edinburgh, whom I mentioned before, deduces the parallax and diftances of the bodies that compofe the folar fyftem, from the Newtonian theory of gravitation, and the periodical times of the Sun and Moon. As he proceeds upon the fuppofition that the diftance of the Sun from the earth is very great, it would therefore feem, that the conclufion fhould be accurate, in proportion to the greatnefs of that diftance. His method de-
pends upon a feries of propofitions, with long and difficult demonftrations; fo that the rules of calculation are not very obvious, without a confiderable knowledge of geometry, in general, and a particular aequaintance with his very ufeful and ingenious treatife. I was defirous of feeing what agreement there was between the refult of his method of calculation, and the obfervations made on the tranfit of Venus; and therefore amufed myfelf in a leifure hour with the comparifon. As it may be agreeable to fome, who have not time to read over the book, and to others, whofe acquaintance with the mathematics will not admit of it, to have the practical rules of computation deduced from his propofitions; I fhall annex them to the foregoing calculations, together with the determination of the Sun's parallax and diftance derived from them.
A Caleuletion of the berizontal Parallax and difance of Abe Sun, according to Mr. Stuart's motbod from tbr principles of gravitation.
Let P-the periodical time of the earth round the Sun $=365$. 256417824 $p=t h e$ periodical time of the Moon round the earth=29. 32162036 enher sevolution from apogee to apogee in time,
27. 554535 m=her mean dift. from the earth, in femidi. of the earth $=60$. 24 t m the tangent of the Sus's horizontal Parallax, at his mean diftance. $S=$ the diltance of the Sun from the earth.
Then according to Mr. Stuart' 0 method, $\left\{\begin{array}{l}P Q \\ P^{2}\end{array} \times \frac{e_{5}^{2}-P^{2}}{5 a \frac{2}{3}-3 p^{\frac{2}{3}}}=\frac{2-\sqrt{1-9 m^{2} t^{2}}}{1-9 m^{2} t^{2}+\sqrt{1-9 w^{2} t^{2}}}\right.$ Now if $\frac{p^{2}}{P^{2}} \times \frac{5 f^{2}-3 p_{3}^{2}}{e^{2}-p_{3}^{2}}=c$; then $8 \frac{3 m \times \overline{2+1.56}}{2 \sqrt{1-.56} \times \overline{1+26}}$ nearly And $S=\frac{3 m \bar{x} \overline{3+c}}{2 \sqrt{1-.5 c \times+1.56}} \quad \begin{aligned} & \text { Neurly. } 8 \text { is greater than the firf, and laft that the leaft } \\ & \text { in there theorems. }\end{aligned}$ But the parallax and diftance of the Sun, may be found nearly, in a fhester method, by the following rules, derived from the foregoing; by faying,
I. As the cube root of the fquare of the Moon's periodic revolution round the Earth, viz.
Is to the cube root of the fquare of her revolution from apogee to $\frac{27,32103030}{27,5545355^{\frac{2}{3}}}$ apogee, vis. apogee, vis.
So is I to a fourth number, which call $A=1.0056748$ I 64 .
2. As 5 A-3:A1::I: a fourth number, which call $B .=.002997833=$ the mean difturbing force of the Sum; the D^{\prime} 's force $=1$.
3. As the reetangle of B and the fquare of the periodic time of the Earth? round the Sun, viz.
$\mathrm{BX} \overline{365,2564}$
ls to the fquare of the periodic time of the moon rownd the Earth, viz.
So is I , to a fourth number, which call $\mathrm{C}=\mathrm{I}, 999840899$.
4. As $\bar{C}-12: 12: C$: to a fourth number; to which add 1 , and from the fquare root of that fum fubtrac 1, and multiply the remainder by the half of $C-1$, or 0,4999204495 , and call that product $\mathrm{D}=1,9999715505$.
5. Subtract
5. Subtract D from 2, malsiply the remainder by D, and.call the fquare root of the product $E .=007543089$.
6. Asthree times the Moon's mean diftence from the Earth, in femidiamcters of the Earth is to E, fo is R, to the tang. of the Sun's horary parallax, at his mean diffance, $=8^{\prime \prime}, 65$.
7. As I: 3 : : the Moon's mean diftance in miles: the San's mean diftance in miles $=$ 94,982,600.

In determining the parallax of the Sun, from the obfervation made io our oblervatory on the 3 d of June, 1769 , I have only made ufe of the time of the internal contact, as I noted it on that day, together with fome of my own micrometer obfervations, without attending ta thofe of the other gentlemen who obferved with me. But as the Society has a right to expect a full account of the refult of the other obfervations, which were made on that occafion; and as fuch account may tend to corroborate the foregoing. calculations, I have, with Dr. Williamfon's permiffron, fubjoined a calculation of his, founded entirely on his own obfervation, which being very fhort, I have inferted entire in his own words, except what refers to the manner in which he judged of the contacts, \&cc. which I have tranfcribed in another place, (fee page 46.) From this, which is very fimilar to the obfervations made by the other gentlemen on that committee, the Society will perceive, that our obfervations muft have been made with confiderable accuracy, as the refult of the calculation is nearly the fame.

Dr. WILLIAMSON's Determination of the Parallax of the SUN, from bis Obfervation of the Transit of VENUS, at Pbiladelpbia, fune 3d, 1769.

" WITH a refracting telefcope, 24 feet long, which magnified near 100 times, I obferved,
$\left.\begin{array}{ccccc}\text { The external contact at } 2^{\text {b }} .11^{\prime} \cdot & 31^{\prime \prime} \\ \text { Internal do. at } & \text { 2. } & 29 \cdot 10\end{array}\right\}$ Mean Time.
" With a micrometer of Dollond's conftruction, fitted to a Gregorian reflector, which magnified 100 times, I meafured the diftance of Venus from the limb of the Sun; alfo the diameters of the Sun and Venus, as follows:

Mean Time.

" I meafured the diam. of Venus on the Sun, and found it to be $55^{\prime \prime}, 42$. I alfo frequently meafured the diam. of the Sun, on the day of obfervation, and the next day, and found it to be $31^{\prime} \cdot 3^{1 \prime}, 30$.
"From thefe data, I fhall attempt to deduce the Sun's par. except that I fhall make no ufe of the meafure at 6^{h}. $3^{\prime \prime}$. $18^{\prime \prime}$, which I fufpected was not accurate at the inftant it was made, wherefore I immediately made another meafure, viz. at $6^{\mathrm{h}} \cdot 33^{\prime} \cdot 55^{\prime \prime}$.
"The neareft dift. of the limb of the Sun from that of $\left.\begin{array}{cccc}\text { Venus at } 5^{\mathrm{h}} \cdot & 43^{\prime} \cdot 17^{\prime \prime} \\ \text { And at } 6 & 33 \cdot & 53\end{array}\right\}$ mean time compared together, give the apparent neareft dift. of their centers $10^{\prime} \cdot 3^{\prime \prime}, 7$, or $603^{\prime \prime}, 7$, and the parallax of Venus was at that time fouth $6^{\prime \prime}, 91$ nearly. Therefore, the geocent. neareft dift. of their centers was $6 \mathrm{ro}^{\prime \prime}, 6 \mathrm{r}$. Then,
"As 72626,3 the relative neareft dift. of Venus from the Sun,
" Is to 28894,9 her dift. from the earth.
"So is 610",61 the geocent. neareft dift. of the cent. of the Sun and Venus,
" To $242^{\prime \prime}, 936=4^{\prime} \cdot 2^{\prime \prime}, 936$, the heliocent. dift. of their centers at the neareft approach.
"As Sine $3^{\circ} \cdot 23^{\prime} .20^{\prime \prime}$ the given inclin. of Venus's orbit to the ecliptic: Is to Radius,
" S o is $S, 242^{\prime \prime}, 936$, the heliocent. dift. of the cent. of the Sun from Venus, at the middle of the tranfit,
" To the Sine of $40^{\prime \prime}$ " $5=1^{\circ} .8^{\prime} \cdot 25^{\prime \prime}$, the Sun's difk, from the node of Venus at the ecliptical conjunction.
"As S, of $1^{\circ} .8^{\prime \prime} \cdot 25^{\prime \prime}$, the Sun's dift. from the node of Venus,
"Is to 10 . 10 ", 61 , the geocent. neareft dift. of their centers

ASTRONOMICAL PAPERS.

* So is Rad: to the S, of $8^{\circ} \cdot 32^{\prime} \cdot 57^{\prime \prime}, 6$, the angle of Venus's vifible path with the ecliptic.
". From $8^{\circ} \cdot 32^{\prime} \cdot 57^{\prime \prime} 6$, the angle of Venus's vifible path,
" Subt. 3. 2.3. 20, the inclination of Venus's orbit with the eclipt. and the remainder is $5^{\circ} \cdot 9^{\prime} \cdot 37^{\prime \prime}, 6$. Then
${ }^{\prime \prime}$ As S, $5^{\circ} \cdot 9^{\prime} \cdot 37^{\prime \prime}, 6$ the diff. of the angle of Venus's vifible path and the inclin. of her orbit, \&xc.
" Is to $\mathrm{S}, 8^{\circ} \cdot 32^{\prime} \cdot 57^{\prime \prime}, 6$ the angle of Venus's vifible path with the eclipt.
${ }^{6}$ So is $2^{\prime}, 392375$ the given hor. motion of the Sun.
"To $3^{\prime}, 95412$ the hor. motion of Venus.
"As Rad. Is to $\mathrm{T}, 8^{\circ} \cdot 3^{\prime} \cdot 57^{\prime \prime}, 6$ the angle of $\mathrm{Ve}-$ nus's vifible path.
" So is $S, 1^{\circ} .8^{\prime} .25^{\prime \prime}$ the Sun's dift. from the node of Venus.
" To T, ro.' - $17^{\prime \prime}, 2$ Venus's geocent. latitude:
"As 72626,3 the relative dift. of Venus from the Sun,
" Is to 28894,9 her diftance from the earth.
" So is $617^{\prime \prime}$,2 her geocent. latitude.
" To $245^{\prime \prime} .556$ her heliocent. latitude.
* From $15^{\prime} \cdot 45^{\prime \prime}, 65$ the femid. of the Sun,
". Take $27^{\prime \prime}, 71$ the femid. of Venus, and the difference is $15^{\prime} \cdot 17^{\prime \prime} 94 \cdot$, the dift. of the center of the Sun from the center of Venus at the inter. contact. But the geocent. neareft dift. of their centers was found 610 ", 6 I . From thefe (b. Euc. 1. 47) the length of half the tranfit line between the int. contacts is found to be $685^{\prime}, 397$ which divided by the hor. motion of Venus gives the femiduration of the tranfit between the two internal contacts $2^{n} \cdot 53^{\prime} \cdot 20^{\prime \prime}, 2$.
" In the fame manner, from the geocent. lat. of Venus; and the neareft dif. of her center from the center of the Sun, we find the time of Venus paffing from the eclipt. conjunction to the middle of the tranfit $22^{\prime} \cdot 44^{\prime \prime}, 9$: Then from $5^{\mathrm{b}}: 28^{\prime} 47^{\prime \prime}$, which I find to be the central time of the middle of the tranfit, deduct $22!\cdot 44^{\prime \prime}, 9$, and the remainder, viz. $5^{\mathrm{b}} \cdot 6^{\prime \prime} \cdot 2^{\prime \prime}, 1$, will be the apparent time of the ecliptical:
ecliptical conjunction when the Sun's place was $2^{\prime} .13^{\circ}$. $27^{\prime} \cdot 20^{\prime \prime}, 5$, as calculated by the aftronomer royal, on the fuppofition that our obfervatory is weft of Greenwich 5^{6}. $0^{\prime} \cdot 35^{\prime \prime}$. ——To the Sun's place in the eclipt. add his dift. from the node of Venus $1^{\circ} \cdot 8^{\prime \prime} \cdot 25^{\prime \prime}$. The fum is $2^{\prime} .14^{\circ}$. $35^{\prime} \cdot 45^{\prime \prime}, 5$, the place of Venus's afcending node.
" From the micrometer meafures above given, it appears that the center of Venus was at her neareft approach to the center of the Sun at $5^{\mathrm{d}} .2 \mathrm{I}^{\prime} \cdot 44^{\prime \prime}$ mean time, or $5^{\text {a }}$. $23^{\prime \prime}, 59^{\prime \prime}$ appar. time. But on account of the parallax of Venus, the appar. time at the center of the Earth was 4^{\prime}. $48^{\prime \prime}$ later, which brings it to $5^{\prime \prime} \cdot 28^{\prime} \cdot 47^{\prime \prime}$ as I have mentioned. From this deduct the femidurat. $2^{\text {b }} \cdot 53^{\prime} \cdot 20$, and the remainder $2^{\mathrm{b}} \cdot 35^{\prime} \cdot 27^{\prime \prime}$ is the time of the internal contact at the center of the earth. This contact I obferved as above, at $2^{\mathrm{A}} \cdot 29^{\prime} \cdot 10^{\prime \prime}$ mean time, or $2^{\mathrm{n}} \cdot 3^{1^{\prime}} \cdot 25^{\prime \prime}$ apparent time. This difference, therefore, viz. $4^{\prime} \cdot 2^{\prime \prime}$, is the obferved effects of Venus's parallax both in latitude and longitude.
"But on the fuppofition that the Sun's horizontal parallax, at her mean dift. from the earth was $8^{\prime \prime}, 65$, as Mr. Short has ftated it at the former tranfit, then his horizontal parallax, on the 3 d of June, the day of the tranfit, would have been $8^{\prime \prime}, 5204$, in which cafe the total effect of her parallax, to haften the internal contact at Philadelphia, hould be $4^{\prime} \cdot \mathrm{I}^{\prime \prime}$. Therefore,
"As $4^{\prime} \cdot \mathrm{I}^{\prime \prime}$ is to $4^{\prime} .{ }^{\prime \prime} 2$, fo is $8^{\prime \prime}, 5204$ to $8^{\prime \prime}, 556$, the Sun's horizontal parallax on the day of the tranfit, according to the foregoing obfervations.
"Hence we have 8 ", 685 , the Sun's horizontal parallax at his mean diftance from the earth. Then fay,
" As the Tang. of the Sun's horizontal parallax : is to the femidiameter of the earth,
"So is Rad. to the diftance of the earth from the Sun, viz. 94791100 Englifh miles, taking the earth's mean femidiameter at 3985.4 miles. The place of the Sun \& Mercury at the Ecliptic
The place of the ascending Node of Mercury

The time of the neareft approach of the Centers of the Sun $\}$ \& Mercury - - - - - - $\}$ The central Semiduration of the Tranfit between the External Contacts 2530 The centralSemiduration of the Tranfit between the Internal Contacts 22344 The apparent time of the External Contad observed at Philada. 236 The apparent time of the Internal Contad observed at Philada. ${ }^{2} 3730$ Projected for the Latitude of Philada. 395654 \& Longitude $\begin{array}{cccc}\circ & 75 & 8 & 45\end{array}$ Weft of Greenwich by JOHNEWING.

ASTR ONOMICAL PAPERS. 77 An Account of xhe Tranfit of MRRCURY overitec SUN,

IN the judgment of moft alfronomers, the tranfits of Mercury and Venus over the Sun afford the beft opportunities, for fettling the longitudes of places on the earth, even preferable to that derived from the eclipfes of Jupiter's fatellites, when the parallax of the Sun is previoully known. Thofe of Mercury happen frequently, and although they are of but little importance in determining the parallax of the Sun and the dimenfions of the folar fyftem, by reafon of his great diffance from the earth, and the difference of their parallaxes being lefs than that of the Sun; yet they have been carefully obferved, for the purpore of fettling his theory, and the longitudes of the places of observation. The fociety therefore fenfible of the importance of this phœenomenon, both to the perfection of aftronomy in general, and particularly for completing the purpofes defigned to be anfwered by the obfervation of the tranfit of Venus, have appointed the fame committee, with the addition of two other gentlemen, to obferve the tranfit of Mercury on the 9 th of November, 1769 , in Philadelphia, that had been before appointed to obferve that of Venus.

Having ffill the fame inftruments in our obfervatory, withech we ufed on the former occafion, together with a new time-piece made by Mr. Diffield of this city, with an ingenious contrivance of his, in the conftruction of the pendulum, to remedy the irregularities arifing from heat and cold; we paid the utmof attention to the going of the clock both before and after the tranfit. From comparing a fufficient number of correfponding altitudes of the Sun'stimbs, we found that our clock was too flow for mean time $\mathbf{x}^{\prime} \cdot 20^{\prime \prime \prime}$ and the equation of time being $5^{\prime} \cdot 49^{\prime \prime}, 6$ or to avoint fractions $15^{\prime} \cdot 5^{\prime \prime} 0^{\prime \prime} 17^{\prime} \cdot 10^{\prime \prime}$ were added to the times of athour offryations, aft they were written down in the obferyatory, to reduce them torapparent time. In this
manner we obtained the time of the fubfequent obfervations. Dr. Williamfon, Mr. Shippen and myfelf ufed the fame telefcopes, we had ufed before in oblerving the tranfit of Venus; excepting that on this occafion I chofe that power of the telefcope which magnifies the diameters of objects an hundred times. Mr. Evans ufed the reflecting telefcope formerly ufed by Mr. Biddle at the Capes.

On the day of the tranfit, we affembled together at the obfervatory, adjufted our telefcopes to diftinct vifion, appointed an affiftant to count the clock with an audible voice, and agreed that no other perion fhould fpeak, nor move from his telefcope, until both contacts were over; but write down his own obfervation feparately by himfelf, that it might be compared with the others. The fky being very ferene, and the limb of the Sun well defined in our telefcopes, we obferved the contacts, as they are exhibited in the following table,

bfervers.	External Cont. h. m. fee	Int. Cont. h. m. fec.	$\begin{aligned} & \text { Par. in } \\ & \text { Vert. } \\ & \text { " } \end{aligned}$	p. to his P.	Path.
Dr. Williamfo	2. 36. 5Ap.T.	2. 37. 30	3,7	3,44	,48 at the
Mr. Sbippen,	2. 36. 12	2. 37. 40	37		-
Mr. Evans, My ${ }^{\text {clf. }}$.	$\begin{array}{llll}\text { 2. } & 36 . & 9 \\ \text { 2. } & 36 . & 9\end{array}$	$\begin{array}{llll}\text { 2. } & 37 \cdot & 38 \\ \text { 2. } & 37 . & 30\end{array}$	3,745	3,44	1,49 at the Intermal

I happened to have that part of the limb of the Sun, on which Mercury entered, in the middle of the field of my telefcope, with my eye intent upon it; fo that I am certain, that there was not the leaft impreffion on the Sun's limb, perceptible by my telefcope, a fingle fecond of time before I difcovered it. So that I am not furprized that Dr. Halley, who had obferved a tranfit of Mercury in the Illand of St. Helena, concluding that, that of Venus would be equally inftantaneous, expected, that the contact of her limb with the Sun might be determined to a fingle fecond of time. The atmofphere of Venus renders it quite otherwife, and produces an uncertainty of 5 or 6 feconds of time, in judging of the contacts; whereas no fuch thing was perceptible in Mercury. The firft appearance of Mercury, on the Sun's limb, was a fteady fmall fpeck,

ASTRONOMICAL PAPERS. 75

fpeck, black, well-defined, and not larger in my telefcope than the dot of a pen. But that of Venus was tremulous, obfcure, and ill-defined, growing gradually darker as the advanced on the Sun. If Mercary has an atmofphere, it muft be fo rare and lowr, that his diffance from us renders it abfolutely imperceptible with the telefcopes that we ufed: At the internal contact, the crefcent of light round the body of Mercury clofed inftantaneoully, fo that it might be judged of with more precifion than that of Venus; his atmofphere giving us no difturbance in this cafe. We could not have a fairer opportunity, for afcertaining the truth of thefe conclufions; as our telefcopes were in good order, and well adjufted, and the fky was remarkably clear and ferene, on both of thefe days. On the firf: of them, not a cloud appeared from morning till evening, and on the latter, none till about four o'clock, when the Sun was very low; and both the tranfits began between two and three o'clock, in the afternoon.

About three o'clock, I applied myfelf to the micrometer, to meafure the diameters of the Sun and Mercury, and the neareft diftance of their limbs; while Dr. William/on read off the divifions of the micrometer, and a third perfon wrote them down, with the times of making them. Thefe meafures make the diameter of the Sun on the gth of November $1769,32^{\prime} \cdot 20^{\prime \prime}, 2$ or his femidiameter $970^{\prime \prime}, 1$ feconds, and the femidiameter of Mercury 4 " 238 . The meafures of the leaft diftances of their limbs reduced to minutes and feconds of a degree, with the parallaxes of Mercury adapted to the apparent times of the obfervations, as they are determined from a very large projection of two inches to a fecond of his hor. parallax, are fet down in the following table.

N. B. In the above table, the meafure at $2^{\text {b. }} 37^{\prime} \cdot 4^{\prime \prime}$ was taken between the neareft limb of the Sun and the interior limb of Mercury neareft to the Sun's center, and is $5^{\prime} \cdot 2^{\prime \prime} 202$, the fame with the diftance of their neareft limbs at $3^{\text {h. }} 39^{\prime} \cdot 25^{\prime \prime}$: So alfo the diftance between the neareft limb of the Sun, and the interior limb of Mercury, at $3^{\text {h. }} 41^{\prime} \cdot 10^{\prime \prime}$, was the fame with the diftance of their nearelt limbs at $3^{\text {h. }} 4^{\prime} \cdot \cdot 50^{\prime \prime}$, viz. $5^{\prime} \cdot 21^{\prime \prime}, 406$. The fame is to be faid of the laft meafure, which was taken from the neareft limb of the Sun to the limb of Mercury neareft to the Sun's center.

If a computation be made from the above meafures, the apparent neareft diftance of their centers will be found to be 45 I" $^{\prime \prime} 914$. But Mercury was then depreffed by paral$\operatorname{lax} 3^{\prime \prime}, \mathrm{II}$; fo that the geocentric neareft approach of their centers was $455^{\prime \prime}, 024$, which happened at $5^{\text {h. }} 1^{\prime} .15^{\prime \prime}$ apparent time, when his par. in the vert. was $4^{\prime \prime}, 042$, and in his path $2^{\prime \prime}, 53$, and perpend. to his path $3^{\prime \prime}, 11$.

The horary motion of Mercury as feen from the Earth is alfo determined from the above meafures to be
$5^{\prime} 5^{\prime} \cdot 56^{\prime \prime}, 941=5^{\prime \prime}, 94856$, which is nearly the fame with what is given by Dr. Halley's tables of Mercury. On the day of the tranfit, he moves, by them, at the rate of $15^{\prime \prime}, 334$ per hour. The Sun's horary motion on that day is fated in the nautical almanac at $2^{\prime \prime}, 516$, and their difference, viz. $12^{\prime}, 818$ is his horary motion from the Sun, as feen at that diftance. Then fay,

Ns the diftance of \Varangle from Θ, is to hisdifance from Θ, So is this horary motion to his hozary motion from \odot, as feen from θ.
4. $830,2920=$ log. of 67653.8

1. $107,8203=\log$. 12.818
2. 603,1508
3. $772,8588=s^{\prime} .92733=s^{\prime} .5 s^{\prime \prime}, 6398$ of hor. not. from O, as feen from Θ :15. $334=$ horary motion of.
4. $516=$ horary motion \odot.

As 17. 850=1. $2: 51,6982$ ethe fund of horary motioms O and $\%$.
Is to 12. $818=1 . \quad 107,8203=$ their difference:
So is cot. $\left.3^{\circ} \cdot 29^{\prime} \cdot 4 d^{\prime}=11.214,2067=\right\}$ the log. cot. of half the tnet. of $\nless{ }^{\prime} \mathrm{s}$ orbit with the - \int ecliptic $=\frac{1}{2} .6^{\circ}$. $59^{\prime} .20^{\prime \prime}$.
12. 322,0270

To Log. Tang. II. $070,3888=85^{\circ} \cdot 8^{\prime \prime} \cdot 22^{\prime \prime}$.
Sum $=$ I71. 38. 42
The fupplement whereof is 8. 21. 18 =the angle of ϕ 's vifible path with thie
ecliptic.
As Rad : Sec. $8^{\circ} \cdot 21^{\prime} .18^{\prime \prime}:$: geo. neareft dift. : the geo. lat. of γ.
Ic. 000,0000
10. 004,6342
2. $658,0343=455^{\prime \prime}, 024=$ geo. neareft diftance.

2i $662,6685=459^{\prime \prime}, 905=$ geo. hat. of $\phi=\gamma^{\prime} \cdot 39^{\prime \prime}, 905$
As dift. of $\%$ from $\odot:$ his dift. from $\Theta:$: geo. lat. : his heliocent. latitude.
4. 495,3305
4. 830,2920
2. $662,668 \mathrm{~s}$
7. 492,9605
2. $997,6300=994^{\prime \prime}, 558$ the hel. lat. of $\not \subset=16 \cdot 34^{\prime \prime}, 558$

As $T, 6^{\circ} \cdot 59^{\prime} \cdot 20^{\prime \prime}: R:: T, 16^{\prime} \cdot 34^{\prime \prime}, 55^{8}:$ Sine of \odot^{\prime} 's dift. from the node of γ.
9. 088;4133
10. - -
7. 683,0140
8. $594,6007=2^{\circ} .15^{\prime} \cdot 12^{\prime \prime}, 2=\bigcirc^{\prime}$'s dift. from the node of γ.
$459,905=$ geocent. lat. \%.
$459,905=$ geocent. lat. \quad. dif . of \odot and.$\underset{\text {. }}{ }$
Sum $=914,929=2.961,3873$
Sum $=914,929=2.961,3873$
Diff $=4,881=0.688,5088$
2)3. 649,8965
3. $824,9480 \dot{5}$

1. $824,94805=66^{\prime \prime}, 8264=$? the length of part of the tranfit line between
2. 551,0104 § hor. motion $\}$ the middle of the tranfit and the eclipt. corin 29 in feconda. Junction.
-1. $273,9376=$ oh. $187205=0$ h. $13^{\prime} \cdot 16^{\prime \prime}, 458=$ the time between the middle and ecliptical conjunetion.
$974,33^{8}=$ the fum of the femidiameters of \odot and $\gamma .$.
$455,024=$ the geo. neareft dift. of their centers.
Sum $=1429,362=3$. 155,1422
Diff. $=$ 519,314
2)5. 870,5722
3. $\left.935,2861=861^{\prime \prime}, 561\right\}$ half the length of the tranfit line from the external contad.
4. $551, \mathrm{crO}=$ the horary motion of γ on \odot, as feen from Θ.
O. $384,2757=2 h .422567=2 \mathrm{~h} .422567=2 \mathrm{~h} .25^{\prime} \cdot 21^{\prime \prime}, 24$ the femidutwtion from the external contact.

965,862 the diff. of the femidiameters of \odot and γ.
455,024 the gev. neareft diftance of their.centers.
Sum=1420,886=3. 152,5691
Diff. $=510,738=2 . \quad 708,2833$
$2)$ 5. 860,8524
2. $930,4262=\left\{\begin{array}{c}851,974=a t h e ~ l e n g \\ \text { internal contact. }\end{array}\right.$
2. $551,0104=$ hor. mot. of $\%$.
0. $379,4158=2$ h. $3956 \mathrm{I}=2 \mathrm{~h} .23^{\prime} \cdot 44^{\prime \prime}, 196$

Now to $2 h .3^{6 \prime} .19^{\prime \prime}$ the time of the external contad, Add 2. 25. 21 the femidur. between the external contacts

The Sum,
To this add,
The fum,
To this add, The fum,
5. I. 30 is the time of the neareft approach of their centers. II. 16,5 the time from the middle to the ecl. conjunction. 5. 12. 46,5 is the apparent time of the ecl. conjunction at Philadelphis. 5. C. 35 the diff. of meridians between Greenwich and Philadelphia. 10. $13.21,6$ is the time of the ecl. conjunction at Greenwich, when the Sun's place, according to the Nautical Almanac, is $78.17^{\circ} 50^{\prime} .41^{\prime \prime}$, and that of Mercury is 1s. $17^{\circ} \cdot 5 \mathrm{~N}^{\prime} .41^{\prime \prime}$, by Dr. Halley's tables. From this fubtract $2^{\circ} .15^{\prime} .12^{\prime \prime}$, the Sun's diftance from the node of Mercury, and the remainder 1s. $15^{\circ} \cdot 35^{\prime} \cdot 29^{\prime \prime}$, is the place of his node at that time.
The Projection of the Transit of MERCURY, Pl. V.
THE following projection of the tranfit of Mercury over the Sun, on the 9 th of November, 1769 , was made from the foregoing meafures and calculations, on the fuppofition that the Sun's horizontal parallax, at his mean diftance is $8^{\prime \prime}, 65$, and therefore, $8^{\prime \prime}, 7437$ on the day of the tranfit. In this cafe, the horizontal parallax of Mercury, at his mean diftance, will be $14^{\prime \prime}, 1132$, and on the day of the tranfit $12^{\prime \prime} 7856$, and therefore his horizontal parallax from the Sun on that day is $4^{\prime \prime}, 0419$, being the difference of their parallaxes.

The delineation wras made in the fame manner as that of the tranfit of Venus. The elements for it were collected
from the preceding calculation, and the parallaxes of Mercury were meafured upon a very large projection, for that purpofe, adapted to the apparent times of the micrometer meafures, and applied to the projection. By thefe, the apparent places of Mercury were determined, as feen at Philadelphia; and fmall circles were drawn round them, with the radius $4^{\prime \prime}, 238$, to reprefent his difk on the face of the Sun. From the limbs of the Sun and Mercury, lines were drawn in the direction of their centers, of the precife length exhibited in the foregoing table of meafures.

Upon the whole, I have given a full and faithful account of our obfervations of the tranfits of Venus and Mercury, in the foregoing theets; and if they fhould be found, in the conclufion, to contribute any thing to the advancement of aftronomical knowledge, it muft reflect an honor on our new obfervatory, and give pleafure to all the lovers of fcience, as well as to,

Gentlemen,

 Your moft obedient And very humble fervant, Pbiladelpbia, fuly $19 t h, 1769 . \quad$ JOHN EWING.An Account of the Tranfit of Venus, over the Sun's Dik, as obferved near Cape Henlopen, on Delaware Bay, Fune 3d, 1769. By Owen Biddle, Joel Bailey, and Drawn up By Owen Biddle.

AGREEABLE to the appointment of the American Pbilofophical Society, to obferve the tranfit of Venus at the light-houfe, near Cape-Henlopen, I fet out by water from Philadelphia, accompanied by Joel Bailey, and Richard Thomas, the latter of whom had offered to accompany us at his own expence, and proved very ferviceable in the affiftance he gave us.

On the 26th of the 5 th month (May) we arrived at LeiwesTown, and immediately endeavoured to gain fuch information

